• Title/Summary/Keyword: breast cancer imaging

Search Result 280, Processing Time 0.028 seconds

Current Status and Future Perspective of PET (PET 이용 현황 및 전망)

  • Lee, Myung-Chul
    • The Korean Journal of Nuclear Medicine
    • /
    • v.36 no.1
    • /
    • pp.1-7
    • /
    • 2002
  • Positron Emission Tomography (PET) is a nuclear medicine imaging modality that consists of systemic administration to a subject of a radiopharmaceutical labeled with a positron-emitting radionuclide. Following administration, its distribution in the organ or structure under study can be assessed as a function of time and space by (1) defecting the annihilation radiation resulting from the interaction of the positrons with matter, and (2) reconstructing the distribution of the radioactivity from a series of that used in computed tomography (CT). The nuclides most generally exhibit chemical properties that render them particularly desirable in physiological studies. The radionuclides most widely used in PET are F-18, C-11, O-15 and N-13. Regarding to the number of the current PET Centers worldwide (based on ICP data), more than 300 PET Centers were in operation in 2000. The use of PET technology grew rapidly compared to that in 1992 and 1996, particularly in the USA, which demonstrates a three-fold rise in PET installations. In 2001, 194 PET Centers were operating in the USA. In 1994, two clinical and research-oriented PET Centers at Seoul National University Hospital and Samsung Medical Center, was established as the first dedicated PET and Cyclotron machines in Korea, followed by two more PET facilities at the Korea Cancer Center Hospital, Ajou Medical Center, Yonsei University Medical Center, National Cancer Center and established their PET Center. Catholic Medical School and Pusan National University Hospital have finalized a plan to install PET machine in 2002, which results in total of nine PET Centers in Korea. Considering annual trends of PET application in four major PET centers in Korea in Asan Medical Center recent six years (from 1995 to 2000), a total of 11,564 patients have been studied every year and the number of PET studies has shown steep growth year upon year. We had 1,020 PET patients in 1995. This number increased to 1,196, 1,756, 2,379, 3,015 and 4,414 in 1996,1997,1998,1999 and 2000, respectively. The application in cardiac disorders is minimal, and among various neuropsychiatric diseases, patients with epilepsy or dementia can benefit from PET studios. Recently, we investigated brain mapping and neuroreceptor works. PET is not a key application for evaluation of the cardiac patients in Korea because of the relatively low incidence of cardiac disease and less costly procedures such as SPECT can now be performed. The changes in the application of PET studios indicate that, initially, brain PET occupied almost 60% in 1995, followed by a gradual decrease in brain application. However, overall PET use in the diagnosis and management of patients with cancer was up to 63% in 2000. The current medicare coverage policy in the USA is very important because reimbursement policy is critical for the promotion of PET. In May 1995, the Health Care Financing Administration (HCFA) began covering the PET perfusion study using Rubidium-82, evaluation of a solitary pulmonary nodule and pathologically proven non-small cell lung cancer. As of July 1999, Medicare's coverage policy expanded to include additional indications: evaluation of recurrent colorectal cancer with a rising CEA level, staging of lymphoma and detection of recurrent or metastatic melanoma. In December of 2001, National Coverage decided to expand Medicare reimbursement for broad use in 6 cancers: lung, colorecctal, lymphoma, melanoma, head and neck, and esophageal cancers; for determining revascularization in heart diseases; and for identifying epilepsy patients. In addition, PET coverage is expected to further expand to diseases affecting women, such as breast, ovarian, uterine and vaginal cancers as well as diseases like prostate cancer and Alzheimer's disease.

Detection of Spinal Metastases: Comparison of Bone Scan and MR Imaging (전이성 척추 악성 종양의 진단 : 골스캔과 자기공명영상의 비교)

  • Kim, Ki-Jun;Sohn, Hyung-Sun;Park, Jeong-Mi;Chung, Soo-Kyo;Lee, Jae-Moon;Kim, Choon-Yul;Bahk, Yong-Whee;Shinn, Kyung-Sub
    • The Korean Journal of Nuclear Medicine
    • /
    • v.28 no.3
    • /
    • pp.384-390
    • /
    • 1994
  • Authors retrospectively compared the 99mTc MDP bone scans and corresponding MR imagings in 20 patients with histologically proven malignancy, Mean interval of the two studies was 16.6 days, Cancer diagnosis Included 8 lung, 2 each of colon, breast, stomach, 1 each of prostate, thyroid, malignant lymphoma and 3 adenocarcinoma of unknown primary site. Of the 105 regions compared, :t6 regions were positive for metastases in bone scans or MR imagings. 30 regions(65.2%) were positive by bone scan and 44 regions(95.7%) by MR imaging. 87 regions(82.9%) were concordantly positive or negative by bone scan and MR imaging, but 18 regions(17.1%) were discordant. In the discordant regions, 16 regions positive in MR imaging were negative in bone scan. The greatest number of discordant findings occured in the cervical region and in the patient with stomach cancer. Our results suggest that the sensitivity of MR Imaging is greater than that of bone scan in detecting spinal metastases. And bone scan is useful screening test of metastasis for evaluating entire skeleton including spine.

  • PDF

Sarcoid-Like Reaction after Complete Remission of Malignancy: CT and 18F-FDG PET/CT Features for the Differential Diagnosis from Lymph Node Metastasis (악성종양의 완전관해 후 발생한 사르코이드증 유사 반응: 림프절 전이와의 감별진단에 유용한 CT와 18F-FDG PET/CT 소견)

  • Hyun Ji Kang;Yookyung Kim;June Young Bae;Jung Hyun Chang;Soo-Hyun Lee
    • Journal of the Korean Society of Radiology
    • /
    • v.82 no.4
    • /
    • pp.903-913
    • /
    • 2021
  • Purpose To identify the imaging features indicative of sarcoid-like reactions in patients with intrathoracic lymphadenopathy after complete remission of malignancies. Materials and Methods This study enrolled five patients with histopathologically confirmed sarcoid-like reactions that developed after cancer remission. The clinical features and findings of CT and 18F-fluorodeoxyglucose (FDG) PET/CT were assessed. Results The underlying malignancies included breast, nasopharyngeal, colon, and endometrial cancer and lymphoma. The time intervals between complete remission of malignancy and the diagnosis of sarcoid-like reaction ranged from 6 to 78 months. CT findings of sarcoid-like reaction included bilateral hilar and mediastinal lymphadenopathies (n = 5), pulmonary nodules (1-15 mm) with peribronchovascular, fissural, or subpleural distribution, and interlobular interstitial thickening in the lungs (n = 4). 18F-FDG PET/CT revealed hypermetabolic uptake in the mediastinal and hilar lymph nodes and both lungs in the absence of extrathoracic uptake (n = 3). The sarcoid-like reactions resolved in all patients after corticosteroid treatment. Conclusion In patients with complete remission of malignancies, newly developed bilateral hilar and mediastinal lymphadenopathies with or without pulmonary nodules of perilymphatic distribution, in the absence of recurrence at the primary tumor site and extrathoracic metastasis, may suggest a sarcoid-like reaction. Such cases warrant histologic evaluation of the lymph nodes to prevent unnecessary systemic chemotherapy.

The comparison of lesion localization methods in breast lymphoscintigraphy (Breast lymphoscintigraphy 검사 시 체표윤곽을 나타내는 방법의 비교)

  • Yeon, Joon ho;Hong, Gun chul;Kim, Soo yung;Choi, Sung wook
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.19 no.2
    • /
    • pp.74-80
    • /
    • 2015
  • Purpose Breast lymphoscintigraphy is an important technique to present for body surface precisely, which shows a lymph node metastasis of malignant tumors at an early stage and is performed before and after surgery in patients with breast cancer. In this study, we evaluated several methods of body outline imaging to present exact location of lesions, as well as compared respective exposure doses. Materials and Methods RANDO phantom and SYMBIA T-16 were used for obtaining imaging. A lesion and an injection site were created by inserting a point source of 0.11 MBq on the axillary sentinel lymph node and 37 MBq on the right breast, respectively. The first method for acquiring the image was used by drawing the body surface of phantom for 30 sec using $Na^{99m}TcO_4$ as a point source. The second, the image was acquired with $^{57}Co$ flood source for 30 seconds on the rear side and the left side of the phantom, the image as the third method was obtained using a syringe filled with 37 MBq of $Na^{99m}TcO_4$ in 10 ml of saline, and as the fourth, we used a photon energy and scatter energy of $^{99m}Tc$ emitting from phantom without any addition radiation exposure. Finally, the image was fused the scout image and the basal image of SPECT/CT using MATLAB$^{(R)}$ program. Anterior and lateral images were acquired for 3 min, and radiation exposure was measured by the personal exposure dosimeter. We conducted preference of 10 images from nuclear medicine doctors by the survey. Results TBR values of anterior and right image in the first to fifth method were 334.9 and 117.2 ($1^{st}$), 266.1 and 124.4 ($2^{nd}$), 117.4 and 99.6 ($3^{rd}$), 3.2 and 7.6 ($4^{th}$), and 565.6 and 141.8 ($5^{th}$). And also exposure doses of these method were 2, 2, 2, 0, and $30{\mu}Sv$, respectively. Among five methods, the fifth method showed the highest TBR value as well as exposure dose, where as the fourth method showed the lowest TBR value and exposure dose. As a result, the last method ($5^{th}$) is the best method and the fourth method is the worst method in this study. Conclusion Scout method of SPECT/CT can be useful that provides the best values of TBR and the best score of survey result. Even though personal exposure dose when patients take scout of SPECT/CT was higher than another scan, it was slight level comparison to 1 mSv as the dose limit to non-radiation workers. If the scout is possible to less than 80 kV, exposure dose can be reduced, and also useful lesion localization provided.

  • PDF

Therapeutic Effect of Gamma Knife Radiosurgery for Multiple Brain Metastases

  • Lee, Chul-Kyu;Lee, Sang-Ryul;Cho, Jin-Mo;Yang, Kyung-Ah;Kim, Se-Hyuk
    • Journal of Korean Neurosurgical Society
    • /
    • v.50 no.3
    • /
    • pp.179-184
    • /
    • 2011
  • Objective : The aim of this study is to evaluate the therapeutic effects of gamma knife radiosurgery (GKRS) in patients with multiple brain metastases and to investigate prognostic factors related to treatment outcome. Methods : We retrospectively reviewed clinico-radiological and dosimetric data of 36 patients with 4-14 brain metastases who underwent GKRS for 264 lesions between August 2008 and April 2011. The most common primary tumor site was the lung (n=22), followed by breast (n=7). At GKRS, the median Karnofsky performance scale score was 90 and the mean tumor volume was 1.2 cc (0.002-12.6). The mean prescription dose of 17.8 Gy was delivered to the mean 61.1% isodose line. Among 264 metastases, 175 lesions were assessed for treatment response by at least one imaging follow-up. Results : The overall median survival after GKRS was $9.1{\pm}1.7$ months. Among various factors, primary tumor control was a significant prognostic factor ($11.1{\pm}$1.3 months vs. $3.3{\pm}2.4$ months, p=0.031). The calculated local tumor control rate at 6 and 9 months after GKRS were 87.9% and 84.2%, respectively. Paddick's conformity index (>0.75) was significantly related to local tumor control. The actuarial peritumoral edema reduction rate was 22.4% at 6 months. Conclusion : According to our results, GKRS can provide beneficial effect for the patients with multiple (4 or more) brain metastases, when systemic cancer is controlled. And, careful dosimetry is essential for local tumor control. Therefore, GKRS can be considered as one of the treatment modalities for multiple brain metastase.

Preliminary Application of Synthetic Computed Tomography Image Generation from Magnetic Resonance Image Using Deep-Learning in Breast Cancer Patients

  • Jeon, Wan;An, Hyun Joon;Kim, Jung-in;Park, Jong Min;Kim, Hyoungnyoun;Shin, Kyung Hwan;Chie, Eui Kyu
    • Journal of Radiation Protection and Research
    • /
    • v.44 no.4
    • /
    • pp.149-155
    • /
    • 2019
  • Background: Magnetic resonance (MR) image guided radiation therapy system, enables real time MR guided radiotherapy (RT) without additional radiation exposure to patients during treatment. However, MR image lacks electron density information required for dose calculation. Image fusion algorithm with deformable registration between MR and computed tomography (CT) was developed to solve this issue. However, delivered dose may be different due to volumetric changes during image registration process. In this respect, synthetic CT generated from the MR image would provide more accurate information required for the real time RT. Materials and Methods: We analyzed 1,209 MR images from 16 patients who underwent MR guided RT. Structures were divided into five tissue types, air, lung, fat, soft tissue and bone, according to the Hounsfield unit of deformed CT. Using the deep learning model (U-NET model), synthetic CT images were generated from the MR images acquired during RT. This synthetic CT images were compared to deformed CT generated using the deformable registration. Pixel-to-pixel match was conducted to compare the synthetic and deformed CT images. Results and Discussion: In two test image sets, average pixel match rate per section was more than 70% (67.9 to 80.3% and 60.1 to 79%; synthetic CT pixel/deformed planning CT pixel) and the average pixel match rate in the entire patient image set was 69.8%. Conclusion: The synthetic CT generated from the MR images were comparable to deformed CT, suggesting possible use for real time RT. Deep learning model may further improve match rate of synthetic CT with larger MR imaging data.

Radiopharmaceuticals for the Therapy of Metastatic Bone Pain (뼈전이의 방사성동위원소 통증치료)

  • Ahn, Byeong-Cheol
    • Nuclear Medicine and Molecular Imaging
    • /
    • v.40 no.2
    • /
    • pp.82-89
    • /
    • 2006
  • Bone metastasis is a common sequelae of solid malignant tumors such as prostate, breast, lung, and renal cancers, which can lead to various complications, including fractures, hypercalcemia, and bone pain, as well as reduced performance status and quality of life it occurs as a result of a complex pathophysiologic process between host and tumor cells leading to cellular invasion, migration adhesion, and stimulation of osteoclastic and osteoblastic activity. Several sequelae occur as a result of osseous metastases and resulting bone pain can lead to significant debilitation. A multidisciplinary approach is usually required not only to address the etiology of the pain and its complicating factors but also to treat the patient appropriately. Pharmaceutical therapy of bone pain, includes non-steroidal analgesics, opiates, steroids, hormones, bisphosphonates, and chemotherapy. While external beam radiation therapy remains the mainstay of pain palliation of a solitary lesions, bone seeking radiopharmaceuticals have entered the therapeutic armamentarium for the treatment of multiple painful osseous lesions. $^{32}P,\;^{89}SrCl,\;^{153}Sm-EDTMP,\;^{188}Re/^{186}Re-HEDP,\;and\;^{177}Lu-EDTMP$ can be used to treat painful osseous metastases. These various radiopharmaceuticals have shown good efficacy in relieving bone pain secondary to bone metastasis. This systemic form of metabolic radiotherapy is simple to administer and complements other treatment options. This has been associated with improved mobility in many patients, reduced dependence on narcotic and non-narcotic analgesics, improved performance status and quality of life, and, in some studios, improved survival. All of these agents, although comprising different physical and chemical characteristics, offer certain advantages in that they are simple to administer, are well tolerated by the patient if used appropriately, and can be used alone or in combination with the other forms of treatment. This article illustrates the salient features of these radiopharmaceuticals, including the usual therapuetic dose, method of administration, and indications for use and also describe about the pre-management checklists, and jndication/contraindication and follow-up protocol.

Estimation of $T_2{^*}$ Relaxation Times for the Glandular Tissue and Fat of Breast at 3T MRI System (3테슬러 자기공명영상기기에서 유방의 유선조직과 지방조직의 $T_2{^*}$이완시간 측정)

  • Ryu, Jung Kyu;Oh, Jang-Hoon;Kim, Hyug-Gi;Rhee, Sun Jung;Seo, Mirinae;Jahng, Geon-Ho
    • Investigative Magnetic Resonance Imaging
    • /
    • v.18 no.1
    • /
    • pp.1-6
    • /
    • 2014
  • Purpose : $T_2{^*}$ relaxation time which includes susceptibility information represents unique feature of tissue. The objective of this study was to investigate $T_2{^*}$ relaxation times of the normal glandular tissue and fat of breast using a 3T MRI system. Materials and Methods: Seven-echo MR Images were acquired from 52 female subjects (age $49{\pm}12 $years; range, 25 to 75) using a three-dimensional (3D) gradient-echo sequence. Echo times were between 2.28 ms to 25.72 ms in 3.91 ms steps. Voxel-based $T_2{^*}$ relaxation times and $R_2{^*}$ relaxation rate maps were calculated by using the linear curve fitting for each subject. The 3D regions-of-interest (ROI) of the normal glandular tissue and fat were drawn on the longest echo-time image to obtain $T_2{^*}$ and $R_2{^*}$ values. Mean values of those parameters were calculated over all subjects. Results: The 3D ROI sizes were $4818{\pm}4679$ voxels and $1455{\pm}785$ voxels for the normal glandular tissue and fat, respectively. The mean $T_2{^*}$ values were $22.40{\pm}5.61ms$ and $36.36{\pm}8.77ms$ for normal glandular tissue and fat, respectively. The mean $R_2{^*}$ values were $0.0524{\pm}0.0134/ms$ and $0.0297{\pm}0.0069/ms$ for the normal glandular tissue and fat, respectively. Conclusion: $T_2{^*}$ and $R_2{^*}$ values were measured from human breast tissues. $T_2{^*}$ of the normal glandular tissue was shorter than that of fat. Measurement of $T_2{^*}$ relaxation time could be important to understand susceptibility effects in the breast cancer and the normal tissue.

Effects of Pinacidil, a Potassium-Channel Opener, on Biodistribution of Thallium-201 in Tumor-Bearing Mice ($K^+$ 통로개방제 Pinacidil이 종양이식 생쥐에서 Tl-201의 체내분포에 미치는 영향)

  • Lee, Jae-Tae;Chun, Kyung-Ah;Lee, Sang-Woo;Kang, Do-Young;Ahn, Byeong-Cheol;Jun, Soo-Han;Lee, Kyu-Bo;Ha, Jeoung-Hee
    • The Korean Journal of Nuclear Medicine
    • /
    • v.34 no.4
    • /
    • pp.303-311
    • /
    • 2000
  • Purpose: Thallium behaves similarly to potassium in vivo. Potassium channel opener (K-opener) opens ATP-sensitive $K^+$-channel located at cell membrane, resulting in potassium efflux from cytosol. We have previously reported that K-opener can alter biokinetics of Tl-201 in cultured cells and in vivo. Malignant tumor cells have high Na-K ATPase activity due to increased metabolic activities and dedifferentiation, and differential delineation of malignant tumor can be possible with Tl-201 imaging. K-opener may affect tumoral uptake of Tl-201 in vivo. To investigate the effects of pinacidil (one of the potent K-openers) on the localization of the tumor with Tl-201 chloride, we evaluated the changes in biodistribution of Tl-201 with pinacidil treatment in tumor-bearing mice. Materials and Methods: Baltic mice received subcutaneous implantation of murine breast cancer cells in the thigh and were used for biodistribution study 3 weeks later. $100{\mu}g$ of pinacidil dissolved in $200{\mu}l$ DMSO/PBS solution was injected intravenously via tail vein at 10 min after 185 KBq ($5{\mu}Ci$) Tl-201 injection. Percentage organ uptake and whole body retention ratio of Tl-201 were measured at various periods after injection, and values were compared between control and pinacidil-treated mice. Results: Pinacidil treatment resulted in mild decrease in blood levels of Tl-201, but renal uptakes were markedly decreased at 30-min, 1- and 2-hour, compared to control group. Hepatic, intestinal and muscular uptake were not different. Absolute percentage uptake and tumor to blood ratios of Tl-201 were lower in pinacidil treated mice than in the control group at all time points measured. Whole body retention ratio of Tl-201 was lower in pinacidil treated mice ($58{\pm}4%$ ), than in the control group ($67{\pm}3%$) at 24 hours after with injection of $100{\mu}g$ pinacidil. Conclusion: K-opener did not enhance, but rather decreased absolute tumoral uptake and tumor-to-blood ratios of Tl-201. Decreased whole body retention ratio and renal uptake were observed with pinacidil treatment in tumor-bearing mice.

  • PDF

Radiation Oncology Digital Image Chart 8nd Digital Radiotherapv Record System at Samsung Medical Center (디지털 화상 병력 시스템과 디지털 방사선치료 기록 시스템의 개발과 사용 경험)

  • Huh Seung Jae;Ahn Yong Chan;Lim Do Hoon;Cho Chung Keun;Kim Dae Yong;Yeo Inhwan;Kim Moon Kyung;Chang Seung Hee;Park Suk Won
    • Radiation Oncology Journal
    • /
    • v.18 no.1
    • /
    • pp.67-72
    • /
    • 2000
  • Background :The authors have developed a Digital image chart(DIC) and digital Radiotherapy Record System (DRRS). We have evaluated the DIC and DRRS for reliability, usefulness, ease of use, and efficiency. Materials and Methods :The basic design of the DIC and DRRS was to build an digital image database of radiation therapy Patient records for a more efficient and timely flow of critical image information throughout the department. This system is a submit of comprehensive radiation oncology management system (C-ROMS) and composed of a picture archiving and communication system (PACS), a radiotherapy information database, and a radiotherapy imaging database. The DIC and DRRS were programmed using Delphi under a Windows 95 environment and is capable of displaying the digital images of patients identification photos, simulation films, radiotherapy setup, diagnostic radiology images, gross lesion Photos, and radiotherapy Planning isodose charts with beam arrangements. Twenty-three clients in the department are connected by Ethernet (10 Mbps) to the central image server (Sun Ultra-sparc 1 workstation). Results :From the introduction of this system in February 1998 through December 1999, we have accumulated a total of 15,732 individual images for 2,556 patients. We can organize radiation therapy in a 'paperless' environment in 120 patients with breast cancer. Using this system, we have succeeded in the prompt, accurate, and simultaneous access to patient care information from multiple locations throughout the department. This coordination has resulted in improved operational efficiency within the department. Conclusion :The authors believe that the DIC and DRRS has contributed to the improvement of radiation oncology department efficacy as well as to time and resource savings by providing necessary visual information throughout the department conveniently and simultaneously. As a result, we can also achieve the 'paperless' and 'filmless' practice of radiation oncology with this system.

  • PDF