• Title/Summary/Keyword: breakdown structure

Search Result 685, Processing Time 0.029 seconds

The Development of Information Breakdown Structure for Integrated Management of Water Filtration Plants (정수장 시설공사의 통합관리를 위한 시설물분류체계 개발)

  • Kim, Chang Hak;Kang, Leen Seok;Kim, Hyo Jin
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.37 no.5
    • /
    • pp.863-869
    • /
    • 2017
  • In this study, the information breakdown structure of water purification plant has been made by classifying various the water purification methods and facilities. this can be utilized as a code system of computer for integrating information and analyzing quantitative of environmental impact and calculating cost of maintenance and energy consumption which was used during life cycle of water purification plant. Since the construction information contains many heterogeneous information, it is very important to have a code system for managing the integrated information. In addition, since water purification plant facilities are mainly composed of installation of facilities including many processes, a more detailed classification code is required. Therefore, in this study, the water purification breakdown structure which is not yet attempted in Korea was constructed by using facet classification system.

A Study of BIM Delivery Model for Railway Construction Project using BIM Function Breakdown Structure (BIM 기능요소 분류체계 도출에 의한 철도시설공사 BIM 기능발주 구성 방안)

  • Kim, Young-Hwan;Kim, Hyeon-Seung;Kang, Leen-Seok
    • Journal of the Korean Society for Railway
    • /
    • v.18 no.4
    • /
    • pp.344-353
    • /
    • 2015
  • Recently, the utilization of the BIM system has been extended to cost and resource simulation, visualized management of construction site information and application of augmented reality including basic 3D modeling. Therefore, various BIM functions are being developed for practical applications. However, since clear classification criteria and knowledge information of BIM functions are not sufficient for field engineers, it is difficult to identify the necessary BIM functions for a construction project. This study suggests a BIM function breakdown structure considering the individual functional properties and a process model that can be ordered by applying BIM in a railway construction project. The proposed delivery model is used to obtain a practical utilization of BIM by analyzing features applicable to railway construction projects; model is verified using a case project.

A Case Study on Work Breakdown Structure(WBS) in Constructing the integrated computing environment of the e-Government (전자정부의 통합전산환경 구축을 위한 작업분할구조(WBS)의 사례연구)

  • Park, Jae-Won;Kim, Don-Gyu;Choi, Jae-Hyun;Lee, Nam-Yong
    • The Journal of Society for e-Business Studies
    • /
    • v.12 no.2
    • /
    • pp.31-45
    • /
    • 2007
  • Over the past decades, there have been numerous studies for approaches to build and operate electronic government systems. Among those studies, work breakdown structure(WBS) has been gained attention increasingly. As a general system engineering techniques. WBS is a kind of methods to engineer and manage electronic government systems effectively. WBS is to organizes tasks and data items for management and engineering for electronic government systems. In this paper, the authors proposed a conceptual WBS model for management and engineering electronic government systems. Also, the authors conducted a case study based on the conceptual WBS model. The results of this study provide useful insights and guidelines for applying the WBS to management and engineering for electronic government systems. The authors believed that the conceptual WBS models will be widely used to management and engineering an electronic government systems.

  • PDF

Weight Evaluation of Risk Factors for Early Construction Stage (초기 건설공사 리스크인자의 중요도 산정)

  • Hwang Ji-Sun;Lee Chan-Sik
    • Korean Journal of Construction Engineering and Management
    • /
    • v.5 no.2 s.18
    • /
    • pp.115-122
    • /
    • 2004
  • This study identifies various risk factors associated with activities of early construction stage, then establishes the Risk Breakdown Structure(RBS) by classifying the risks into the three groups; Common risks, risks for Earth works, and risks for Foundation works. The Common risks are identified and classified by considering various aspects of the early construction stage such as financial, political, constructional aspects, etc. The risks for Earth works and Foundation works are identified in detail by surveying technical specifications, relevant claim cases and interviewing with experts. These risks are classified based on the Wok Breakdown Structure(WBS) of the early construction stage. The WBS presented in this study classifies the works of early construction stage into four categories; excavation, sheeting works, foundation works, footing works. This study suggests a risk analysis method using fuzzy theory for construction projects. Construction risks are generally evaluated as vague linguistic value by subjective decision making. Fuzzy theory is a proper method to quantify vague conditions of construction activities. Therefore, this study utilizes fuzzy theory to analyse construction risks. The weight of risks is estimated by reflecting the interrelationship among risk factors from absolute weights obtained by fuzzy measure into the relative weights by Analytical Hierarchy Process(AHP). The interrelationship is estimated by Sugeno-fuzzy measure.

Methodology of Fire Safety IFC Schema Extension through Architectural WBS Hierarchy Analysis (건축 WBS 위계 분석을 통한 소방 IFC 스키마 확장 방법론에 관한 연구)

  • Kim, Tae-Hoon;Won, Jung-Hye;Hong, Soon-Min;Choo, Seung-Yeon
    • Journal of KIBIM
    • /
    • v.12 no.4
    • /
    • pp.70-79
    • /
    • 2022
  • As BIM(Building Information Modeling) technology advances in architecture around the world, projects and industries using BIM are increasing. Unlike previous developments that were limited to buildings, BIM is now spreading to other fields such as civil engineering and electricity. In architecture, BIM is used in the entire process from design to maintenance of a building, and IFC(Industry Foundation Classes), a neutral format with interoperability, is used as an open BIM format. Since firefighting requires intuitive 3D models for evacuation and fire simulations, BIM models are desirable. However, due to the BIM model, which was developed centered on building objects, there are no objects and specific properties for fire evacuation in the IFC scheme. Therefore, in this study, when adding a new object in the firefighting area to the IFC schema, the IFC interoperability is not broken and the building WBS(Work Breakdown Structure) is analyzed with a hierarchical system similar to the IFC format to define the scope for a new object and the firefighting part within of the building WBS to derive a firefighting HBS(Hierarchy Breakdown Structure) with the extension of the object-oriented IFC file. And according to HBS, we propose an IFC schema extension method. It is a methodology that allows BIM users to instantly adapt the IFC schema to their needs. Accordingly, the methodology derived from this study is expected to be expanded in various areas to minimize information loss from IFC. In the future, we will apply the IFC extension methodology to the actual development process using HBS to verify that it is actually applicable within the IFC schema.

Prediction Model for Gas-Energy Consumption using Ontology-based Breakdown Structure of Multi-Family Housing Complex (온톨로지 기반 공동주택 분류체계를 활용한 가스에너지 사용량 예측 모델)

  • Hong, Tae-Hoon;Park, Sung-Ki;Koo, Choong-Wan;Kim, Hyun-Joong;Kim, Chun-Hag
    • Korean Journal of Construction Engineering and Management
    • /
    • v.12 no.6
    • /
    • pp.110-119
    • /
    • 2011
  • Global warming caused by excessive greenhouse gas emission is causing climate change all over the world. In Korea, greenhouse gas emission from residential buildings accounts for about 10% of gross domestic emission. Also, the number of deteriorated multi-family housing complexes is increasing. Therefore, the goal of this research is to establish the bases to manage energy consumption continuously and methodically during MR&R period of multi-family housings. The research process and methodologies are as follows. First, research team collected the data on project characteristics and energy consumption of multi-family housing complexes in Seoul. Second, an ontology-based breakdown structure was established with some primary characteristics affecting the energy consumption, which were selected by statistical analysis. Finally, a predictive model of energy consumption was developed based on the ontology-based breakdown structure, with application of CBR, ANN, MRA and GA. In this research, PASW (Predictive Analytics SoftWare) Statistics 18, Microsoft EXCEL, Protege 4.1 were utilized for data analysis and prediction. In future research, the model will be more continuous and methodical by developing the web-base system. And it has facility manager of government or local government, or multi-family housing complex make a decision with definite references regarding moderate energy consumption.

Identification of Breakdown Structure for Infrastructure Maintenance, Repair, and Rehabilitation Technologies using Comparative Case Study (비교사례 연구를 통한 인프라 유지관리 기술 분류체계 도출)

  • Kim, Du Yon;Cha, Yongwoon;Park, Wonyoung;Park, Taeil
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.10
    • /
    • pp.248-258
    • /
    • 2020
  • This study proposed a breakdown structure for maintenance and management technologies under the concept of comprehensive asset management at the life cycle level of infrastructure based on benchmarking with other developed countries. For this purpose, a comparative case study was performed to review and analyze the existing definitions and hierarchies for infrastructure maintenance, repair, and rehabilitation (MR&R) systems under major industrialized countries and South Korea. In accordance with the ratio of maintenance costs to GDP, the U.S., U.K, and Japan were selected to review their systems. The classifications and definitions of MR&R technologies under the laws were analyzed. The result showed that most developed countries differentiate maintenance and repair from improvement and constitute a system centered on preventive maintenance activities. On the other hand, Korea's system for facility management is not definitely classified and still focused on reactive structures, which need to be improved. In this study, as proposed, a breakdown structure established the concept of Maintenance and Management, Maintenance & Repair, and Performance Improvement. Consequently, this study could be used as the basis for the implementation of preventive MR&R activities and reasonable resource allocations from an asset management point of view.

Super Junction LDMOS with N-Buffer Layer (N 버퍽층을 갖는 수퍼접합 LDMOS)

  • Park Il-Yong
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.55 no.2
    • /
    • pp.72-75
    • /
    • 2006
  • A CMOS compatible Super Junction LDMOS (SJ-LDMOS) structure, which reduces substrate-assisted depletion effects, is reported. The proposed structure uses a N-buffer layer between the pillars and P-substrate to achieve global charge balance between the pillars, the N-buffer layer and the P-substrate. The new structure features high breakdown voltage, low on-resistance, and reduced sensitivity to doping imbalance in the pillars.

Device characteristics of 2.5kV Gate Commutated Thyristor (2-5kV급 Gate Commutated Thyristor 소자의 제작 특성)

  • Kim, Sang-Cheol;Kim, Hyung-Woo;Seo, Kil-Soo;Kim, Nam-Kyun;Kim, Eun-Dong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.07a
    • /
    • pp.280-283
    • /
    • 2004
  • This paper discribes the design concept, fabrication process and measuring result of 2.5kV Gate Commutated Thyristor devices. Integrated gate commutated thyristors(IGCTs) is the new power semiconductor device used for high power inverter, converter, static var compensator(SVC) etc. Most of the ordinary GTOs(gate turn-off thyristors) are designed as non-punch-through(NPT) concept; i.e. the electric field is reduced to zero within the N-base region. In this paper, we propose transparent anode structure for fast turn-off characteristics. And also, to reach high breakdown voltage, we used 2-stage bevel structure. Bevel angle is very important for high power devices, such as thyristor structure devices. For cathode topology, we designed 430 cathode fingers. Each finger has designed $200{\mu}m$ width and $2600{\mu}m$ length. The breakdown voltage between cathode and anode contact of this fabricated GCT device is 2,715V.

  • PDF

The Optimal Design and Electrical Characteritics of 1,700 V Class Double Trench Gate Power MOSFET Based on SiC (1,700 V급 SiC 기반의 단일 및 이중 트렌치 게이트 전력 MOSFET의 최적 설계 및 전기적 특성 분석)

  • Ji Yeon Ryou;Dong Hyeon Kim;Dong Hyeon Lee;Ey Goo Kang
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.36 no.4
    • /
    • pp.385-390
    • /
    • 2023
  • In this paper, the 1,700 V level SiC-based power MOSFET device widely used in electric vehicles and new energy industries was designed, that is, a single trench gate power MOSFET structure and a double trench gate power MOSFET structure were proposed to analyze electrical characteristics while changing the design and process parameters. As a result of comparing and analyzing the two structures, it can be seen that the double trench gate structure shows quite excellent characteristics according to the concentration of the drift layer, and the breakdown voltage characteristics according to the depth of the drift layer also show excellent characteristics of 200 V or more. Among them, the trench gate power MOSFET device can be applied not only to the 1,700 V class but also to a voltage range above it, and it is believed that it can replace all Si devices currently applied to electric vehicles and new energy industries.