• Title/Summary/Keyword: brazing filler metal

Search Result 89, Processing Time 0.023 seconds

Brazing Filler Metal and Process for Stainless Steel (스테인리스강용 브레이징 합금과 브레이징 공정)

  • Hong, Sung Chul;Park, Sang Yoon;Jung, Do Hyun;Oh, Joo Hee;Lee, Jae Hoon;Kim, Wonjoong;Jung, Jae Pil
    • Journal of Welding and Joining
    • /
    • v.30 no.6
    • /
    • pp.15-20
    • /
    • 2012
  • Brazing technology has been widely used among bonding technologies because it enables to bond various metals, even ceramics, dissimilar metals, and give higher bonding strength, cost down, automation, etc. However, there are many parameters to achieve optimal brazing joint such as brazing alloys, brazing atmospheres, designs and brazing methods, etc. The brazing parameters affect seriously on the characteristic of final brazing products. Stainless steel is broadly used in high temperature applications, chemical industry, heat exchangers, muffler of vehicles, and so on. Accordingly, in this article, brazing alloys, forms of brazing alloys, brazing methods and atmospheres for stainless steel were described.

A study on Brazing Interfacial Properties of $Al_2O_3/Al$ 6061 ($Al_2O_3/Al$ 6061의 접합부 계면특성에 관한 연구)

  • Seo, S.Y.;An, B.G.;Lee, K.Y.
    • Journal of Power System Engineering
    • /
    • v.7 no.3
    • /
    • pp.74-79
    • /
    • 2003
  • Alumina($Al_2O_3$) and Al 6061 were brazed by using Al-12wt% Si filler metal in a high vacuum environment. The interfacial microstructure and mechanical properties of the joints were investigated. The results obtained were as follows. (1) The maximum tensile strength of 54Mpa was acquired at the processing conditions of high vacuum ($3{\times}10^{-6}Torr$), $620^{\circ}C$ and 10min, but this condition will not be used in the industrial area due to high evaporation of Al alloy composition. (2) Reaction products for holding time and brazing temperature worked as stress relieve layer and the fractures after the mechanical properties test were occurred to the ceramic side or reaction layer. (3) The glancing angle X-ray diffraction analysis for the reaction product of $Al_2O_3/Al$ 6061 were processed. the joint strengths were low due to existed $Al_2Si_5\;and\;SiO_2$.

  • PDF

A357을 이용한 반응고 상태에서의 브레이징 접합면 분석

  • Choi, B.H.;Kwon, Y.H.;Lee, S.Y.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.05a
    • /
    • pp.485-487
    • /
    • 2008
  • Aluminum brazing needs normally careful control of temperatures due to little difference between brazing temperatures and melting temperatures of base materials. Unsuitable processing conditions such as brazing temperature, gap between brazed materials, inadequate feeding of flux, etc. can lead to occur joining defects. In this study, A357 was used as a filler metal for the brazing of pure aluminum base materials. A357 was brazed at temperatures in the semi-solid state. Interface microstructures with base materials were observed using OM and SEM/EDS and compared to conventional aluminum brazing.

  • PDF

Active Metal Brazing Applied to Joining of ZrO2-Ti Alloy (ZrO2-Ti합금의 활성금속 브레이징)

  • Kee, Se-Ho;Park, Sang-Yoon;Jung, Jae-Pil;Kim, Won-Joong
    • Journal of Welding and Joining
    • /
    • v.30 no.3
    • /
    • pp.38-43
    • /
    • 2012
  • In this study, active metal brazing methods for $ZrO_2$ and Ti alloy were discussed. To get a successful metal-ceramic bonding, various factors (melting temperature, corrosion, sag resistance, thermal expansion coefficient etc. of base materilas and filler metal) should be considered. Moreover, in order to clarify bonding between the metal and ceramic, the mechanism of the interfacial structure of the joints should be identified. The driving force for the formation of metal and ceramic interfaces is the reduction of the free energy which occurs when their contact becomes complete. Interfacial bonding depends on the material combinations and the bonding processes. This study describes the bonding between ceramic and metal in an active metal brazing.

Optimization of arc brazing process parameters for exhaust system parts using box-behnken design of experiment

  • Kim, Yong;Park, Pyeong-Won;Park, Ki-Young;Ryu, Jin-Chul
    • Journal of Welding and Joining
    • /
    • v.33 no.2
    • /
    • pp.23-31
    • /
    • 2015
  • Stainless steel is used in automobile muffler and exhaust systems. However, in comparison with other steels it has a high thermal expansion rate and low thermal conductivity, and undergoes excessive thermal deformation after welding. To address this problem, we evaluated the use of arc brazing in place of welding for the processing of an exhaust system, and investigated the parameters that affect the joint characteristics. Muffler parts STS439 and hot-dipped Al coated steel were used as test specimens, and CuAl brazing wire was used as the filler metal for the cold metal transfer (CMT) welding machine, which is a low heat input arc welder. In addition, a Box-Behnken design of experiment was used, which is a response surface methodology. The main process parameters (current, speed, and torch angle) were used to determine the appropriate welding quality and the mechanical properties of the brazing part was evaluated at the optimal welding condition. The optimal processing condition for arc brazing was 135A current, 51cm/min speed and $74^{\circ}$ torch angle. The process was applied to an actual exhaust system muffler and the prototype was validated by thermal fatigue, thermal shock, and endurance limit tests.

Microstructure and Mechanical Properties of Gas Metal Arc Brazed Joint of DP Steel with Cu-Si Filler Metal (Cu-Si 삽입금속을 이용한 DP강의 MIG 아크 브레이징 접합부의 미세조직과 기계적 성질)

  • Cho, Wook-Je;Yoon, Tae-Jin;Kwak, Sung-Yun;Lee, Jae-Hyeong;Kang, Chung-Yun
    • Journal of Welding and Joining
    • /
    • v.34 no.5
    • /
    • pp.70-76
    • /
    • 2016
  • In this study, Microstructure and tensile properties in arc brazed joints of 1000MPa grade DP steel using Cu-Si insert metal were investigated. The fusion zone was composed of Cu phase which solidified a little Fe and Si. The former phase formed due to dilute the edge of base material by arc, although Fe was not solid solution in Cu at the room temperature. Cu3Si particles formed by crystallization at $1100^{\circ}C$ during faster cooling. After the tensile shear test, there are no differences between the brazed joint efficiencies. The maximum joint efficient was about 37% compared to strength of base metal. It is better than that of arc brazed joint of DP steel using Cu-Sn filler metal. Fracture position of all brazing conditions was in the fusion zone. Crack initiation occurred at three junction point which was a stress singularity point of upper sheet, lower sheet and the fusion zone. And then crack propagated across the fusion zone. The reason why the fracture occurred at fusion zone was that the hardness of fusion zone was lower than that of base material and heat affected zone. The correlation among maximum load and hardness of fusion zone and EST at fractured position was $R^2=0.9338$. Therefore, this means that hardness and EST can have great impact on maximum load.