• Title/Summary/Keyword: brain connectivity

Search Result 98, Processing Time 0.024 seconds

Anatomical Brain Connectivity Map of Korean Children (한국 아동 집단의 구조 뇌연결지도)

  • Um, Min-Hee;Park, Bum-Hee;Park, Hae-Jeong
    • Investigative Magnetic Resonance Imaging
    • /
    • v.15 no.2
    • /
    • pp.110-122
    • /
    • 2011
  • Purpose : The purpose of this study is to establish the method generating human brain anatomical connectivity from Korean children and evaluating the network topological properties using small-world network analysis. Materials and Methods : Using diffusion tensor images (DTI) and parcellation maps of structural MRIs acquired from twelve healthy Korean children, we generated a brain structural connectivity matrix for individual. We applied one sample t-test to the connectivity maps to derive a representative anatomical connectivity for the group. By spatially normalizing the white matter bundles of participants into a template standard space, we obtained the anatomical brain network model. Network properties including clustering coefficient, characteristic path length, and global/local efficiency were also calculated. Results : We found that the structural connectivity of Korean children group preserves the small-world properties. The anatomical connectivity map obtained in this study showed that children group had higher intra-hemispheric connectivity than inter-hemispheric connectivity. We also observed that the neural connectivity of the group is high between brain stem and motorsensory areas. Conclusion : We suggested a method to examine the anatomical brain network of Korean children group. The proposed method can be used to evaluate the efficiency of anatomical brain networks in people with disease.

Statistical network analysis for epilepsy MEG data

  • Haeji Lee;Chun Kee Chung;Jaehee Kim
    • Communications for Statistical Applications and Methods
    • /
    • v.30 no.6
    • /
    • pp.561-575
    • /
    • 2023
  • Brain network analysis has attracted the interest of neuroscience researchers in studying brain diseases. Magnetoencephalography (MEG) is especially proper for analyzing functional connectivity due to high temporal and spatial resolution. The application of graph theory for functional connectivity analysis has been studied widely, but research on network modeling for MEG still needs more. Temporal exponential random graph model (TERGM) considers temporal dependencies of networks. We performed the brain network analysis, including static/temporal network statistics, on two groups of epilepsy patients who removed the left (LT) or right (RT) part of the brain and healthy controls. We investigate network differences using Multiset canonical correlation analysis (MCCA) and TERGM between epilepsy patients and healthy controls (HC). The brain network of healthy controls had fewer temporal changes than patient groups. As a result of TERGM, on the simulation networks, LT and RT had less stable state than HC in the network connectivity structure. HC had a stable state of the brain network.

Attunement Disorder : A Disorder of Brain Connectivity (조현병(調鉉病) : 뇌 연결성의 장애)

  • Kim, Ki Won;Park, Kyung-Min;Jang, Hye-Ryeon;Lee, Yu Sang;Park, Seon-Cheol
    • Korean Journal of Biological Psychiatry
    • /
    • v.20 no.4
    • /
    • pp.136-143
    • /
    • 2013
  • Objectives We reviewed cellular and synaptic dysconnectivity, disturbances in micro- and macro- circuitries, and neurodevelopmentally-derived disruptions of neural connectivity in the pathogenesis of schizophrenia. Method We reviewed the selected articles about disturbances in neural circuits which had been proposed as a pathogenetic mechanism of schizophrenia. Results The literature review reveals that schizophrenia may be a disease related to disturbance in neurodevelopmental mechanism, shown as 'a misconnection syndrome of neural circuit or neural network'. In descriptive psychopathological view, definition of a disorder of brain connectivity has limitation to explain other aspects of schizophrenia including deterministic strictness in thought process. Conclusion Schizophrenia is considered as a disorder of brain connectivity as well as a neurodevelopmental disorder related with genetic and environmental factors. We could make a suggestion that "JoHyeonByung (attunement disorder)" denotes the disturbances of psychic fine-tuning which correspond to the neural correlates of brain dysconnectivity metaphorically.

Computational electroencephalography analysis for characterizing brain networks

  • Sunwoo, Jun-Sang;Cha, Kwang Su;Jung, Ki-Young
    • Annals of Clinical Neurophysiology
    • /
    • v.22 no.2
    • /
    • pp.82-91
    • /
    • 2020
  • Electroencephalography (EEG) produces time-series data of neural oscillations in the brain, and is one of the most commonly used methods for investigating both normal brain functions and brain disorders. Quantitative EEG analysis enables identification of frequencies and brain activity that are activated or impaired. With studies on the structural and functional networks of the brain, the concept of the brain as a complex network has been fundamental to understand normal brain functions and the pathophysiology of various neurological disorders. Functional connectivity is a measure of neural synchrony in the brain network that refers to the statistical interdependency between neural oscillations over time. In this review, we first discuss the basic methods of EEG analysis, including preprocessing, spectral analysis, and functional-connectivity and graph-theory measures. We then review previous EEG studies of brain network characterization in several neurological disorders, including epilepsy, Alzheimer's disease, dementia with Lewy bodies, and idiopathic rapid eye movement sleep behavior disorder. Identifying the EEG-based network characteristics might improve the understanding of disease processes and aid the development of novel therapeutic approaches for various neurological disorders.

Spatial Correlations of Brain fMRI data

  • Choi Kyungmee
    • Communications for Statistical Applications and Methods
    • /
    • v.12 no.1
    • /
    • pp.241-252
    • /
    • 2005
  • In this study we suggest that the spatial correlation structure of the brain fMRI data be used to characterize the functional connectivity of the brain. For some concussion and recovery data, we examine how the correlation structure changes from one step to another in the data analyses, which will allow us to see the effect of each analysis to the spatial correlation or the functional connectivity of the brain. This will lead us to spot the processes which cause significant changes in the spatial correlation structure of the brain. We discuss whether or not we can decompose correlation matrices in terms of its causes of variations in the data.

New approach of using cortico-cortical evoked potential for functional brain evaluation

  • Jo, Hyunjin;Kim, Dongyeop;Song, Jooyeon;Seo, Dae-Won
    • Annals of Clinical Neurophysiology
    • /
    • v.23 no.2
    • /
    • pp.69-81
    • /
    • 2021
  • Cortico-cortical evoked potential (CCEP) mapping is a rapidly developing method for visualizing the brain network and estimating cortical excitability. The CCEP comprises the early N1 component the occurs at 10-30 ms poststimulation, indicating anatomic connectivity, and the late N2 component that appears at < 200 ms poststimulation, suggesting long-lasting effective connectivity. A later component at 200-1,000 ms poststimulation can also appear as a delayed response in some studied areas. Such delayed responses occur in areas with changed excitability, such as an epileptogenic zone. CCEP mapping has been used to examine the brain connections causally in functional systems such as the language, auditory, and visual systems as well as in anatomic regions including the frontoparietal neocortices and hippocampal limbic areas. Task-based CCEPs can be used to measure behavior. In addition to evaluations of the brain connectome, single-pulse electrical stimulation (SPES) can reflect cortical excitability, and so it could be used to predict a seizure onset zone. CCEP brain mapping and SPES investigations could be applied both extraoperatively and intraoperatively. These underused electrophysiologic tools in basic and clinical neuroscience might be powerful methods for providing insight into measures of brain connectivity and dynamics. Analyses of CCEPs might enable us to identify causal relationships between brain areas during cortical processing, and to develop a new paradigm of effective therapeutic neuromodulation in the future.

Combined Analysis Using Functional Connectivity of Default Mode Network Based on Independent Component Analysis of Resting State fMRI and Structural Connectivity Using Diffusion Tensor Imaging Tractography (휴지기 기능적 자기공명영상의 독립성분분석기법 기반 내정상태 네트워크 기능 연결성과 확산텐서영상의 트랙토그래피 기법을 이용한 구조 연결성의 통합적 분석)

  • Choi, Hyejeong;Chang, Yongmin
    • Journal of Korea Multimedia Society
    • /
    • v.24 no.5
    • /
    • pp.684-694
    • /
    • 2021
  • Resting-state Functional Magnetic Resonance Imaging(fMRI) data detects the temporal correlations in Blood Oxygen Level Dependent(BOLD) signal and these temporal correlations are regarded to reflect intrinsic cortical connectivity, which is deactivated during attention demanding, non-self referential tasks, called Default Mode Network(DMN). The relationship between fMRI and anatomical connectivity has not been studied in detail, however, the preceded studies have tried to clarify this relationship using Diffusion Tensor Imaging(DTI) and fMRI. These studies use method that fMRI data assists DTI data or vice versa and it is used as guider to perform DTI tractography on the brain image. In this study, we hypothesized that functional connectivity in resting state would reflect anatomical connectivity of DMN and the combined images include information of fMRI and DTI showed visible connection between brain regions related in DMN. In the previous study, functional connectivity was determined by subjective region of interest method. However, in this study, functional connectivity was determined by objective and advanced method through Independent Component Analysis. There was a stronger connection between Posterior Congulate Cortex(PCC) and PHG(Parahippocampa Gyrus) than Anterior Cingulate Cortex(ACC) and PCC. This technique might be used in several clinical field and will be the basis for future studies related to aging and the brain diseases, which are needed to be translated not only functional connectivity, but structural connectivity.

Brain Activation Pattern and Functional Connectivity Network during Experimental Design on the Biological Phenomena

  • Lee, Il-Sun;Lee, Jun-Ki;Kwon, Yong-Ju
    • Journal of The Korean Association For Science Education
    • /
    • v.29 no.3
    • /
    • pp.348-358
    • /
    • 2009
  • The purpose of this study was to investigate brain activation pattern and functional connectivity network during experimental design on the biological phenomena. Twenty six right-handed healthy science teachers volunteered to be in the present study. To investigate participants' brain activities during the tasks, 3.0T fMRI system with the block experimental-design was used to measure BOLD signals of their brain and SPM2 software package was applied to analyze the acquired initial image data from the fMRI system. According to the analyzed data, superior, middle and inferior frontal gyrus, superior and inferior parietal lobule, fusiform gyrus, lingual gyrus, and bilateral cerebellum were significantly activated during participants' carrying-out experimental design. The network model was consisting of six nodes (ROIs) and its six connections. These results suggested the notion that the activation and connections of these regions mean that experimental design process couldn't succeed just a memory retrieval process. These results enable the scientific experimental design process to be examined from the cognitive neuroscience perspective, and may be used as a basis for developing a teaching-learning program for scientific experimental design such as brain-based science education curriculum.

Brain activation pattern and functional connectivity network during classification on the living organisms

  • Byeon, Jung-Ho;Lee, Jun-Ki;Kwon, Yong-Ju
    • Journal of The Korean Association For Science Education
    • /
    • v.29 no.7
    • /
    • pp.751-758
    • /
    • 2009
  • The purpose of this study was to investigate brain activation pattern and functional connectivity network during classification on the biological phenomena. Twenty six right-handed healthy science teachers volunteered to be in the present study. To investigate participants' brain activities during the tasks, 3.0T fMRI system with the block experimental-design was used to measure BOLD signals of their brain. According to the analyzed data, superior, middle and inferior frontal gyrus, superior and inferior parietal lobule, fusiform gyrus, lingual gyrus, and bilateral cerebellum were significantly activated during participants' carrying-out classification. The network model was consisting of six nodes (ROIs) and its fourteen connections. These results suggested the notion that the activation and connections of these regions mean that classification is consist of two sub-network systems (top-down and bottom-up related) and it functioning reciprocally. These results enable the examination of the scientific classification process from the cognitive neuroscience perspective, and may be used as basic materials for developing a teaching-learning program for scientific classification such as brain-based science education curriculum in the science classrooms.

Statistical methods for modelling functional neuro-connectivity (뇌기능 연결성 모델링을 위한 통계적 방법)

  • Kim, Sung-Ho;Park, Chang-Hyun
    • The Korean Journal of Applied Statistics
    • /
    • v.29 no.6
    • /
    • pp.1129-1145
    • /
    • 2016
  • Functional neuro-connectivity is one of the main issues in brain science in the sense that it is closely related to neurodynamics in the brain. In the paper, we choose fMRI as a main form of response data to brain activity due to its high resolution. We review methods for analyzing functional neuro-connectivity assuming that measurements are made on physiological responses to neuron activation. This means that we deal with a state-space and measurement model, where the state-space model is assumed to represent neurodynamics. Analysis methods and their interpretation should vary subject to what was measured. We included analysis results of real fMRI data by applying a high-dimensional autoregressive model, which indicated that different neurodynamics were required for solving different types of geometric problems.