• 제목/요약/키워드: brain cell culture

Search Result 134, Processing Time 0.023 seconds

Systemic Approaches Identify a Garlic-Derived Chemical, Z-ajoene, as a Glioblastoma Multiforme Cancer Stem Cell-Specific Targeting Agent

  • Jung, Yuchae;Park, Heejoo;Zhao, Hui-Yuan;Jeon, Raok;Ryu, Jae-Ha;Kim, Woo-Young
    • Molecules and Cells
    • /
    • v.37 no.7
    • /
    • pp.547-553
    • /
    • 2014
  • Glioblastoma multiforme (GBM) is one of the most common brain malignancies and has a very poor prognosis. Recent evidence suggests that the presence of cancer stem cells (CSC) in GBM and the rare CSC subpopulation that is resistant to chemotherapy may be responsible for the treatment failure and unfavorable prognosis of GBM. A garlic-derived compound, Z-ajoene, has shown a range of biological activities, including anti-proliferative effects on several cancers. Here, we demonstrated for the first time that Z-ajoene specifically inhibits the growth of the GBM CSC population. CSC sphere-forming inhibition was achieved at a concentration that did not exhibit a cytotoxic effect in regular cell culture conditions. The specificity of this inhibitory effect on the CSC population was confirmed by detecting CSC cell surface marker CD133 expression and biochemical marker ALDH activity. In addition, stem cell-related mRNA profiling and real-time PCR revealed the differential expression of CSC-specific genes, including Notch, Wnt, and Hedgehog, upon treatment with Z-ajoene. A proteomic approach, i.e., reverse-phase protein array (RPPA) and Western blot analysis, showed decreased SMAD4, p-AKT, 14.3.3 and FOXO3A expression. The protein interaction map (http://string-db.org/) of the identified molecules suggested that the AKT, ERK/p38 and $TGF{\beta}$ signaling pathways are key mediators of Z-ajoene's action, which affects the transcriptional network that includes FOXO3A. These biological and bioinformatic analyses collectively demonstrate that Z-ajoene is a potential candidate for the treatment of GBM by specifically targeting GBM CSCs. We also show how this systemic approach strengthens the identification of new therapeutic agents that target CSCs.

In Vitro Neural Cell Differentiation Derived from Human Embryonic Stem Cells: Effects of PDGF-bb and BDNF on the Generation of Functional Neurons (인간 배아 줄기세포 유래 신경세포로의 분화: BDNF와 PDGF-bb가 기능성 신경세포 생성에 미치는 영향)

  • Cho, Hyun-Jung;Kim, Eun-Young;Lee, Young-Jae;Choi, Kyoung-Hee;Ahn, So-Yeon;Park, Se-Pill;Lim, Jin-Ho
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.29 no.2
    • /
    • pp.117-127
    • /
    • 2002
  • Objective: This study was to investigate the generation of the functional neuron derived from human embryonic stem (hES, MB03) cells on in vitro neural cell differentiation system. Methods: For neural progenitor cell formation derived from hES cells, we produced embryoid bodies (EB: for 5 days, without mitogen) from hES cells and then neurospheres (for $7{\sim}10$ days, 20 ng/ml of bFGF added N2 medium) from EB. And then finally for the differentiation into mature neuron, neural progenitor cells were cultured in i) N2 medium only (without bFGF), ii) N2 supplemented with 20 ng/ml platelet derived growth factor-bb (PDGF-bb) or iii) N2 supplemented with 5 ng/ml brain derived neurotrophic factor (BDNF) for 2 weeks. Identification of neural cell differentiation was carried out by immunocytochemistry using $\beta_{III}$-tubulin (1:250), MAP-2 (1:100) and GFAP (1:500). Also, generation of functional neuron was identified using anti-glutamate (Sigma, 1:1000), anti-GABA (Sigma, 1:1000), anti-serotonin (Sigma, 1:1000) and anti-tyrosine hydroxylase (Sigma, 1:1000). Results: In vitro neural cell differentiation, neurotrophic factors (PDGF and BDNF) treated cell groups were high expressed MAP-2 and GFAP than non-treated cell group. The highest expression pattern of MAP-2 and $\beta_{III}$-tubulin was indicated in BDNF treated group. Also, in the presence of PDGF-bb or BDNF, most of the neural cells derived from hES cells were differentiated into glutamate and GABA neuron in vitro. Furthermore, we confirmed that there were a few serotonin and tyrosine hydroxylase positive neuron in the same culture environment. Conclusion: This results suggested that the generation of functional neuron derived from hES cells was increased by addition of neurotrophic factors such as PDGF-bb or BDNF in b-FGF induced neural cell differentiation system and especially glutamate and GABA neurons were mainly produced in the system.

Inhibitory effects of Coptidis Rhizoma on the LPS-induced production of nitric oxide and $TNF-{\alpha}$ in mouse macrophage cells (황련의 쥐 대식세포로부터 LPS에 의해 유도되는 nitric oxide 및 $TNF-{\alpha}$의 생성억제효과)

  • Jung, Hyo-Won;Park, Yong-Ki
    • The Korea Journal of Herbology
    • /
    • v.21 no.2
    • /
    • pp.165-173
    • /
    • 2006
  • Objectives : Coptidis Rhizoma has been known traditional medicine with antimicrobial activities. We investigated inhibitory effects of Coptidis Rhizoma extract on lipopolysaccharide(LPS)-induced nitric oxide production from mouse macrophages. Methods : After Coptidis Rhizoma extract was pretreated in BV2, mouse brain macrophages and RAW264.7 mouse macrophages, cells were activated with LPS. To investigate cytotoxicity Coptidis Rhizoma extract, cell viability was measured by MTT assay. The production of nitric oxide(NO) and inducible nitric oxide synthase(iNOS) was determined in each culture supernatant and mRNA by Griess reaction and RT-PCR. The production of $TNF-{\alpha}$ from cells was measured by ELISA. Results : Coptidis Rhizoma extract significantly inhibited LPS-induced NO production in BV2 and RAW264.7 cells. Coptidis Rhizoma extract also greatly suppressed mRNA expression of iNOS in BV2 and RAW264.7 cells activated by LPS. Conclusion : These data suggests that Coptidis Rhizoma extract may have an anti-inflammatory effect through the inhibition of NO production.

  • PDF

TEM Sample Preparation for Cultured Neurons on a Glass Coverslip (Hydrofluoric acid 용액을 이용한 유리 커버글라스에 배양된 신경세포의 전자현미경 시료제작법)

  • Oh, Hyun-Woo;Park, Ho-Yong
    • Applied Microscopy
    • /
    • v.35 no.4
    • /
    • pp.10-15
    • /
    • 2005
  • Cultured neurons from Drosophila brain on a glass coverslip to understand the structural basis of synapse were prepared for TEM observations. Neurons on a coverslip were fixed, dehydrated and embedded in Epon without separating from coverslip. After polymerization, the block was placed in 49% hydrofluoric acid to remove the coverslip. The block was examined under a light microscope to select exact neurons, then trimmed and sectioned for TEM observation.

Aseptic Meningitis after a Lumbar Epidural Steroid Injection -A case report- (요부 경막외 스테로이드 주입 후 발생한 무균성 수막염 -증례 보고-)

  • Hwang, Byeong Mun;Leem, Jung Gil
    • The Korean Journal of Pain
    • /
    • v.18 no.1
    • /
    • pp.52-55
    • /
    • 2005
  • Complications following a well conducted epidural steroid injection are rare. A 50-year-old man developed a headache and neck stiffness 2 days after a lumbar epidural steroid injection. Under the impression of aseptic meningitis, fluid and nonsteroidal anti-inflammatory drug therapy was started immediately after cerebrospinal fluid (CSF) sampling. The CSF was turbid, and revealed a white blood cell count, protein, glucose and pressure of $550/{\mu}l$ (98% lymphocyte), 107.9 mg/dl, 48 mg/dl (serum 113 mg/dl) and $17cmH_2O$, respectively. The CSF stain and culture, and antibody test and polymerase chain reaction for pathogens were negative. A computed tomography (CT) scan of the brain revealed no abnormality, and a chest roentgenogram and the results of the neurological examination were normal. Under the impression of aseptic meningitis, the condition was managed conservatively, without antibiotics. Seven days later, the clinical symptoms had improved, and the patient discharged.

Diarylpropionitrile inhibits melanogenesis via protein kinase A/cAMP-response element-binding protein/microphthalmiaassociated transcription factor signaling pathway in α-MSH-stimulated B16F10 melanoma cells

  • Lee, Hyun Jeong;An, Sungkwan;Bae, Seunghee;Lee, Jae Ho
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.26 no.2
    • /
    • pp.113-123
    • /
    • 2022
  • Diarylpropionitrile (DPN), a selective agonist for estrogen receptor β (ERβ), has been reported to regulate various hormonal responses through activation of ERβ in tissues including the mammary gland and brain. However, the effect of DPN on melanogenesis independent of ERβ has not been studied. The aim of this study is to examine the possibility of anti-melanogenic effect of DPN and its underlying mechanism. Melanin contents and cellular tyrosinase activity assay indicated that DPN inhibited melanin biosynthesis in alpha-melanocyte stimulating hormone-stimulated B16F10 melanoma cell line. However, DPN had no direct influence on in vitro tyrosinase catalytic activity. On the other hand, 17β-estradiol had no effect on inhibition of melanogenesis, suggesting that the DPN-mediated suppression of melanin production was not related with estrogen signaling pathway. Immunoblotting analysis showed that DPN down-regulated the expression of microphthalmia-associated transcription factor (MITF), a central transcription factor of melanogenesis and its down-stream genes including tyrosinase, tyrosinase-related protein (TRP)-1, and TRP-2. Also, DPN attenuated the phosphorylation of protein kinase A (PKA) and cAMP-response element-binding protein (CREB). Additionally, DPN suppressed the melanin synthesis in UVB-irradiated HaCaT conditioned media culture system suggesting that DPN has potential as an anti-melanogenic activity in physiological conditions. Collectively, our data show that DPN inhibits melanogenesis via downregulation of PKA/CREB/MITF signaling pathway.

The neuroprotective effect of mycophenolic acid via anti-apoptosis in perinatal hypoxic-ischemic brain injury (주산기 저산소성 허혈성 뇌손상에서 항세포자멸사를 통한 mycophenolic acid의 신경보호 효과)

  • Kim, Ji Young;Yang, Seung Ho;Cha, Sun Hwa;Kim, Ji Yeun;Jang, Young Chae;Park, Kwan Kyu;Kim, Jin Kyung;Chung, Hai Lee;Seo, Eok Su;Kim, Woo Taek
    • Clinical and Experimental Pediatrics
    • /
    • v.50 no.7
    • /
    • pp.686-693
    • /
    • 2007
  • Purpose : Mycophenolic acid (MPA), the active metabolite of mycophenolate mofetil (MMF), is a potent inhibitor of inosine-monophosphate dehydrogenase (IMPDH), a new immunosuppressive drug used. It was reported that MPA protected neurons after excitotoxic injury, induced apoptosis in microglial cells. However, the effects of MPA on hypoxic-ischemic (HI) brain injury has not been yet evaluated. Therefore, we examined whether MPA could be neuroprotective in perinatal HI brain injury using Rice-Vannucci model (in vivo) and in rat brain cortical cell culture induced by hypoxia (in vitro). Methods : Cortical cells were cultured using a 18-day-pregnant Sprague-Dawley (SD) rats and incubated in 1% $O_2$ incubator for hypoxia. MPA ($10{\mu}g/mL$) before or after a HI insult was treated. Seven-day-old SD rat pups were subjected to left carotid occlusion followed by 2 hours of hypoxic exposure (8% $O_2$). MPA (10 mg/kg) before or after a HI insult were administrated intraperitoneally. Apoptosis was measured using western blot and real-time PCR for Bcl-2, Bax, caspase-3. Results : H&E stain revealed increased brain volume in the MPA-treated group in vivo animal model of neonatal HI brain injury. Western blot and real-time PCR showed the expression of caspase-3 and Bax/Bcl-2 were decreased in the MPA-treated group In in vitro and in vivo model of perinatal HI brain injury, Conclusion : These results may suggest that the administration of MPA before HI insult could significantly protect against perinatal HI brain injury via anti-apoptotic mechanisms, which offers the possibility of MPA application for the treatment of neonatal HI encephalopathy.

TCF4-Targeting miR-124 is Differentially Expressed amongst Dendritic Cell Subsets

  • Sun Murray Han;Hye Young Na;Onju Ham;Wanho Choi;Moah Sohn;Seul Hye Ryu;Hyunju In;Ki-Chul Hwang;Chae Gyu Park
    • IMMUNE NETWORK
    • /
    • v.16 no.1
    • /
    • pp.61-74
    • /
    • 2016
  • Dendritic cells (DCs) are professional antigen-presenting cells that sample their environment and present antigens to naïve T lymphocytes for the subsequent antigen-specific immune responses. DCs exist in a range of distinct subpopulations including plasmacytoid DCs (pDCs) and classical DCs (cDCs), with the latter consisting of the cDC1 and cDC2 lineages. Although the roles of DC-specific transcription factors across the DC subsets have become understood, the posttranscriptional mechanisms that regulate DC development are yet to be elucidated. MicroRNAs (miRNAs) are pivotal posttranscriptional regulators of gene expression in a myriad of biological processes, but their contribution to the immune system is just beginning to surface. In this study, our in-house probe collection was screened to identify miRNAs possibly involved in DC development and function by targeting the transcripts of relevant mouse transcription factors. Examination of DC subsets from the culture of mouse bone marrow with Flt3 ligand identified high expression of miR-124 which was able to target the transcript of TCF4, a transcription factor critical for the development and homeostasis of pDCs. Further expression profiling of mouse DC subsets isolated from in vitro culture as well as via ex vivo purification demonstrated that miR-124 was outstandingly expressed in CD24+ cDC1 cells compared to in pDCs and CD172α+ cDC2 cells. These results imply that miR-124 is likely involved in the processes of DC subset development by posttranscriptional regulation of a transcription factor(s).

Biological Control of Meloidogyne hapla Using an Antagonistic Bacterium

  • Park, Jiyeong;Seo, Yunhee;Kim, Young Ho
    • The Plant Pathology Journal
    • /
    • v.30 no.3
    • /
    • pp.288-298
    • /
    • 2014
  • We examined the efficacy of a bacterium for biocontrol of the root-knot nematode (RKN) Meloidogyne hapla in carrot (Daucus carota subsp. sativus) and tomato (Solanum lycopersicum). Among 542 bacterial isolates from various soils and plants, the highest nematode mortality was observed for treatments with isolate C1-7, which was identified as Bacillus cereus based on cultural and morphological characteristics, the Biolog program, and 16S rRNA sequencing analyses. The population density and the nematicidal activity of B. cereus C1-7 remained high until the end of culture in brain heart infusion broth, suggesting that it may have sustainable biocontrol potential. In pot experiments, the biocontrol efficacy of B. cereus C1-7 was high, showing complete inhibition of root gall or egg mass formation by RKN in carrot and tomato plants, and subsequently reducing RKN damage and suppressing nematode population growth, respectively. Light microscopy of RKN-infected carrot root tissues treated with C1-7 showed reduced formation of gall cells and fully developed giant cells, while extensive gall cells and fully mature giant cells with prominent cell wall ingrowths formed in the untreated control plants infected with RKNs. These histopathological characteristics may be the result of residual or systemic biocontrol activity of the bacterium, which may coincide with the biocontrol efficacies of nematodes in pots. These results suggest that B. cereus C1-7 can be used as a biocontrol agent for M. hapla.

PROBLEMS IN OSTEOGENIC DIFFERENTIATION OF RAT BONE MARROW STROMAL CELLS (쥐의 골수로부터 추출한 줄기세포를 이용한 조골세포로의 분화 유도과정에서 나타난 문제점에 관한 분석 연구)

  • Kim, In-Sook;Cho, Tae-Hyung;Zhang, Yu-Lian;Lee, Kyu-Back;Park, Yong-Doo;Rho, In-Sub;Weber, F.;Lee, Jong-Ho;Kim, Myung-Jin;Hwang, Soon-Jung
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.27 no.1
    • /
    • pp.1-8
    • /
    • 2005
  • This study was aimed to characterize osteogenic potential of rat bone marrow stromal cells (BMSC) isolated with standard flushing method and investigate the plasticity of transdifferentiation between osteoblastic and adipocytic lineage of cultured BMSC. Unlike aspiration method in human, rat bone marrow was extracted by means of irrigation with culture media that elevates the possibility of co-extraction of committed osteoprogenitor, or preosteoblast or other progenitor cells of several types present inside bone marrow. The cultured stromal cells showed high ALP activity which is representative marker of osteoblast without any treatment. Osteogenic inducers such as Dex and BMP-2 were examined for the evaluation of their effect on osteogenic and adipocytic differentiation of stromal cells, because they function as osteoinductive agent in stromal cells, but simultaneously induce adipogenic differentiation. Osteogenic differentiation was evaluated by measuring alkaline phosphatase activity or mRNA expression of osteoblast markers such as osteopontin, bone sialoprotein, collagen type I and CbfaI, and in vitro matrix mineralization by von Kossa staining. Oil red staining method was used to detect adipocyte and adipocytic marker, aP2 and $PPAR{\gamma}2$ expression was examined using RT-PCR. It can be supposed that irrigation procedure resulted in high portion of already differentiation-committed osteoprogenitor cell showing elevated ALP activity and strong mineralization only under the supplement of $100{\mu}M$ ascorbic 2-phosphate and 10mM ${\beta}$-glycerophosphate without any treatment of osteogenic inducers such as Dex and BMP-2. Dex and BMP-2 seemed to transdifferentiate osteoprogenitor cells having high ALP activity into adipocytes temporarily, but continuous treatment redifferentiated into osteoblast and developed in vitro matrix mineralization. This property must be considered either in tissue engineering for bone regeneration, or in research of characterization of osteogenic differentiation, with rat BMSC isolated by the standard irrigation method.