• 제목/요약/키워드: box

Search Result 6,629, Processing Time 0.038 seconds

Statistical optimization of phytol and polyunsaturated fatty acid production in the Antarctic microalga Micractinium variabile KSF0031

  • Kim, Eun Jae;Chae, Hyunsik;Koo, Man Hyung;Yu, Jihyeon;Kim, Hyunjoong;Cho, Sung Mi;Hong, Kwang Won;Lee, Joo Young;Youn, Ui Joung;Kim, Sanghee;Choi, Han-Gu;Han, Se Jong
    • ALGAE
    • /
    • v.37 no.2
    • /
    • pp.175-183
    • /
    • 2022
  • Polar microorganisms produce physiologically active substances to adapt to harsh environments, and these substances can be used as biomedical compounds. The green microalga Micractinium variabile KSF0031, which was isolated from Antarctica, produced phytol, a natural antimicrobial agent. Furthermore, several polyunsaturated fatty acids (PUFAs), including omega-3, exhibit antioxidant properties. Here statistical methods (Plackett-Burman design and Box-Behnken design) were used to optimize the culture medium of KSF0031 to improve biomass production, and K2HPO4, MgSO4·7H 2O, and ammonium ferric citrate green (AFCg) were selected as significant components of the culture medium. Changes in the concentration of K2HPO4 and MgSO4·7H 2O as positive factors and AFCg as a negative factor affected cell growth to a remarkable degree. The biomass production in a 100 L culture using the optimized medium for 24 d at 18℃ was improved by 37.5% compared to that obtained using the original BG-11 medium. The quantities of PUFAs and phytol obtained were 13 mg g-1 dry cell weight (DCW) and 10.98 mg g-1 DCW, which represent improved yields of 11.70% and 48.78%, respectively. The results of this study could contribute to an improved production of phytol and fatty acids from Antarctic microalgae in the biomedical industry.

Optimal Pre-Plating Method of Chicken Satellite Cells for Cultured Meat Production

  • Kim, So-Hee;Kim, Chan-Jin;Lee, Eun-Yeong;Son, Yu-Min;Hwang, Young-Hwa;Joo, Seon-Tea
    • Food Science of Animal Resources
    • /
    • v.42 no.6
    • /
    • pp.942-952
    • /
    • 2022
  • To establish a pre-plating method of chicken satellite cells with high purity, pre-plating was performed under culture conditions of 37℃ and 41℃, and the pre-plating time was set from a total of 3 hours to 6 hours in consideration of the cell attachment time. The purity of the cells was confirmed by staining paired box protein 7 (Pax7) after proliferation, and Pax7 expression was the highest in culture flasks shaken for 2 hours after incubation at 41℃ for 2 hours to prevent the attachment of satellite cells (p<0.05). Also, when pre-plating and proliferation were performed at 37℃ and 41℃, the Pax7 expression rate was higher at 41℃. The differentiation capabilities of the three groups (T3, T6, and T7) with high Pax7 expression were compared and the fusion index (%) and myotube formation area (%) determined by myosin heavy chain (MHC) staining was calculated. The T6 and T7 groups, which were cultured at 41℃, showed significantly higher values than the T3 group (p<0.05). There was no significant difference in the expression of Pax7 and MHC between the T6 and T7 groups (p>0.05). These results suggest that pre-plating at 41℃ for a total of 4 hours was the most efficient in terms of cost and time for purifying chicken satellite cells for cultured meat.

Chronic cold stress-induced myocardial injury: effects on oxidative stress, inflammation and pyroptosis

  • Hongming Lv;Yvxi He;Jingjing Wu; Li Zhen ;Yvwei Zheng
    • Journal of Veterinary Science
    • /
    • v.24 no.1
    • /
    • pp.2.1-2.14
    • /
    • 2023
  • Background: Hypothermia is a crucial environmental factor that elevates the risk of cardiovascular disease, but the underlying effect is unclear. Objectives: This study examined the role of cold stress (CS) in cardiac injury and its underlying mechanisms. Methods: In this study, a chronic CS-induced myocardial injury model was used; mice were subjected to chronic CS (4℃) for three hours per day for three weeks. Results: CS could result in myocardial injury by inducing the levels of heat shock proteins 70 (HSP70), enhancing the generation of creatine phosphokinase-isoenzyme (CKMB) and malondialdehyde (MDA), increasing the contents of tumor necrosis factor-α (TNF-α), high mobility group box 1 (HMGB1) interleukin1b (IL-1β), IL-18, IL-6, and triggering the depletion of superoxide dismutase (SOD), catalase (CAT), and glutathione (GSH). Multiple signaling pathways were activated by cold exposure, including pyroptosis-associated NOD-like receptor 3 (NLRP3)-regulated caspase-1-dependent/Gasdermin D (GSDMD), inflammation-related toll-like receptor 4 (TLR4)/myeloid differentiation factor 88 (MyD88)-mediated nuclear factor kappa B (NF-κB), and mitogen-activated protein kinase (MAPK), as well as oxidative stressinvolved thioredoxin-1/thioredoxin-interacting protein (Txnip) signaling pathways, which play a pivotal role in myocardial injury resulting from hypothermia. Conclusions: These findings provide new insights into the increased risk of cardiovascular disease at extremely low temperatures.

The Effect of Virtual Reality Program Combining Transcranial Direct Current Stimulation on Depression, Hand Function, Cognition, and Daily Life Activities of Patients with Mild Cognitive Disorders (경두개직류전류자극을 결합한 가상현실프로그램이 경도인지장애환자의 우울, 손기능, 인지와 일상생활활동에 미치는 영향)

  • Ko-Un Kim;Bo-Ra Kim;Tae-Gyu An
    • Journal of The Korean Society of Integrative Medicine
    • /
    • v.11 no.1
    • /
    • pp.53-62
    • /
    • 2023
  • Purpose : This study evaluated the effects of transcranial direct current stimulation and a virtual reality program on the depression, hand functions, cognitive function, and activities of daily living of patients with mild cognitive impairment by dividing 20 patients with mild cognitive impairment and depression. The 20 patients were divided into a treatment group (transcranial direct current stimulation + a virtual reality program) and a control group (placebo transcranial direct current stimulation + a placebo virtual reality program). Methods : This study allocated ten subjects to the treatment group and ten subjects to the control group. The treatment was given five times per week for six weeks (30 sessions), and each session was 30 minutes. This study screened depression by using SGDS-K, a short geriatric depression scale, to examine depression before and after treatment intervention. This study also used the box and block test, NCSE, and FIM to evaluate hand functions, cognitive function, and activities of daily living, respectively. Results : The results showed that depression significantly decreased, hand functions significantly increased, cognitive function significantly improved, and activities of daily living significantly increased after intervention in the treatment and control groups. The magnitude of changes in depression, hand functions, cognitive function, and activities of daily living was significantly different between the two groups after intervention (p>.05). Conclusion : The results showed that the application of transcranial direct current stimulation and a virtual reality program could improve cognitive function, hand functions, and activities of daily living by decreasing depression. Therefore, it can be concluded that the simultaneous application of transcranial direct current stimulation and a virtual reality program is an intervention method, which can be applied for decreasing depression, enhancing hand functions, improving cognitive function, and increasing activities of daily living in patients with mild cognitive impairment.

Analysis System for Public Interest Report Video of Traffic Law Violation based on Deep Learning Algorithms (딥러닝 알고리즘 기반 교통법규 위반 공익신고 영상 분석 시스템)

  • Min-Seong Choi;Mi-Kyeong Moon
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.18 no.1
    • /
    • pp.63-70
    • /
    • 2023
  • Due to the spread of high-definition black boxes and the introduction of mobile applications such as 'Smart Citizens Report' and 'Safety Report', the number of public interest reports for violations of Traffic Law has increased rapidly, resulting in shortage of police personnel to handle them. In this paper, we describe the development of a system that can automatically detect lane violations which account for the largest proportion of public interest reporting videos for violations of traffic laws, using deep learning algorithms. In this study, a method for recognizing a vehicle and a solid line object using a YOLO model and a Lanenet model, a method for tracking an object individually using a deep sort algorithm, and a method for detecting lane change violations by recognizing the overlapping range of a vehicle object's bounding box and a solid line object are described. Using this system, it is expected that the shortage of police personnel in charge will be resolved.

Development of Modified Flexibility Ratio - Racking Ratio Relationship of Box Tunnels Subjected to Earthquake Loading Considering Rocking

  • Duhee Park;Van-Quang Nguyen;Gyuphil Lee;Youngsuk Lee
    • Journal of the Korean GEO-environmental Society
    • /
    • v.24 no.2
    • /
    • pp.13-24
    • /
    • 2023
  • Tunnels may undergo a larger or a smaller response compared with the free-field soil. In the pseudo-static procedure, the response of the tunnel is most often characterized by a curve that relates the racking ratio (R) with the flexibility ratio (F), where R represents the ratio of the tunnel response with respect to the free-field vibration and F is the relative stiffness of the tunnel and the surrounding soil. A set of analytical and empirical curves that do not account for the depth and the aspect ratio of the tunnel are typically used in practice. In this study, a series of dynamic analyses are conducted to develop a set of F-Rm relations for use in a frame analysis method. Rm is defined as an adjusted R where the rocking mode of deformation is removed and only the racking deformation is extracted. The numerical model is validated against centrifuge test recordings. The influence of aspect ratio, buried depth of tunnel on results is investigated. The results show that Rm increases with the increase of the buried depth and the aspect ratio. The widely used F-R relations are highlighted to be different compared with the obtained results in this study. Therefore, the updated F-Rm relations with proposed equations are recommended to be used in practice design. The rocking response decreases with either the decrease of the difference of stiffness between surrounding soil and tunnel or the larger aspect ratio of the tunnel section.

Efficient Generation of Dopaminergic Neurons from Mouse Ventral Midbrain Astrocytes

  • Jin Yi Han;Eun-Hye Lee;Sang-Mi Kim;Chang-Hwan Park
    • Biomolecules & Therapeutics
    • /
    • v.31 no.3
    • /
    • pp.264-275
    • /
    • 2023
  • Parkinson's disease (PD) is a common neurodegenerative disorder characterized by tremors, bradykinesia, and rigidity. PD is caused by loss of dopaminergic (DA) neurons in the midbrain substantia nigra (SN) and therefore, replenishment of DA neurons via stem cell-based therapy is a potential treatment option. Astrocytes are the most abundant non-neuronal cells in the central nervous system and are promising candidates for reprogramming into neuronal cells because they share a common origin with neurons. The ability of neural progenitor cells (NPCs) to proliferate and differentiate may overcome the limitations of the reduced viability and function of transplanted cells after cell replacement therapy. Achaete-scute complex homolog-like 1 (Ascl1) is a well-known neuronal-specific factor that induces various cell types such as human and mouse astrocytes and fibroblasts to differentiate into neurons. Nurr1 is involved in the differentiation and maintenance of DA neurons, and decreased Nurr1 expression is known to be a major risk factor for PD. Previous studies have shown that direct conversion of astrocytes into DA neurons and NPCs can be induced by overexpression of Ascl1 and Nurr1 and additional transcription factors genes such as superoxide dismutase 1 and SRY-box 2. Here, we demonstrate that astrocytes isolated from the ventral midbrain, the origin of SN DA neurons, can be effectively converted into DA neurons and NPCs with enhanced viability. In addition, when these NPCs are inducted to differentiate, they exhibit key characteristics of DA neurons. Thus, direct conversion of midbrain astrocytes is a possible cell therapy strategy to treat neurodegenerative diseases.

Integrative applications of network pharmacology and molecular docking: An herbal formula ameliorates H9c2 cells injury through pyroptosis

  • Zhongwen Qi;Zhipeng Yan;Yueyao Wang;Nan Ji;Xiaoya Yang;Ao Zhang;Meng Li;Fengqin Xu;Junping Zhang
    • Journal of Ginseng Research
    • /
    • v.47 no.2
    • /
    • pp.228-236
    • /
    • 2023
  • Background: QiShen YiQi pills (QSYQ) is a Traditional Chinese Medicine (TCM) formula, which has a significant effect on the treatment of patients with myocardial infarction (MI) in clinical practice. However, the molecular mechanism of QSYQ regulation pyroptosis after MI is still not fully known. Hence, this study was designed to reveal the mechanism of the active ingredient in QSYQ. Methods: Integrated approach of network pharmacology and molecular docking, were conducted to screen active components and corresponding common target genes of QSYQ in intervening pyroptosis after MI. Subsequently, STRING and Cytoscape were applied to construct a PPI network, and obtain candidate active compounds. Molecular docking was performed to verify the binding ability of candidate components to pyroptosis proteins and oxygen-glucose deprivation (OGD) induced cardiomyocytes injuries were applied to explore the protective effect and mechanism of the candidate drug. Results: Two drug-likeness compounds were preliminarily selected, and the binding capacity between Ginsenoside Rh2 (Rh2) and key target High Mobility Group Box 1 (HMGB1)was validated in the form of hydrogen bonding. 2 μM Rh2 prevented OGD-induced H9c2 death and reduced IL-18 and IL-1β levels, possibly by decreasing the activation of the NLRP3 inflammasome, inhibiting the expression of p12-caspase1, and attenuating the level of pyroptosis executive protein GSDMD-N. Conclusions: We propose that Rh2 of QSYQ can protect myocardial cells partially by ameliorating pyroptosis, which seems to have a new insight regarding the therapeutic potential for MI.

A study on the application of LSMS object-oriented classification based on GIS (GIS 기반 LSMS 객체지향 분류 적용 연구)

  • Han Yong Lee;Jong Woo Jung;Hye Won Jeong;Chung Dea Lee
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.408-408
    • /
    • 2023
  • 하천공간은 하도, 사주, 식생, 하천구조물 등에 대한 특성을 지니고 있으며, 현장조사를 통해 하천공간에 대한 자료를 분석하여 기초자료를 생산한다. 기존에는 현장에서 육안조사나 지상에서 사진촬영, 스케치방법으로 하천공간특성에 대한 조사를 수행하였으나, 지상에서 조사한 자료은 하천특성에 대한 물리적·공간적 특성을 파악하기 어렵고 자료의 활용성이 낮은 한계점이 존재한다. 이와 같은 한계를 극복하기 위해 GIS 및 RS 기술을 활용한 고도화된 첨단조사 기술 및 장비가 도입되어 활용되고 있다. 본 연구에서는 하천공간특성을 GIS 기반으로 객체지향 분류 적용 연구와 분류 항목에 따른 공간분석 연구를 수행하였다. 연구를 위한 대상지역은 섬진강권역의 지석천 유역 하류부에 위치하고 있는 지석천 친수공원을 대상으로 선정하였다. 대상지역의 고해상도 항공영상을 수집 및 정합한 후 QGIS에서 제공하는 Orfeo ToolBox(OTB)의 LSMS(Large Scale Mean-Shift) 기법으로 정합한 항공영상의 객체지향 영상분할을 실시하여 벡터 레이어를 생성하였고, 하천공간특성에 따른 항목을 선정하여 각 항목의 영역에 대한 선별을 통해 훈련데이터를 생성하였다. 훈련데이터는 랜덤 포레스트를 이용하여 각 항목에 대한 자동 분류를 확인하였으며, 하천공간특성의 정량적 평가를 위해 분류된 각 항목별 공간분석을 통해 면적, 위치정보(위도, 경도, 표고)를 산정하였다. 분석 결과, 하천공간특성을 GIS 기반의 벡터 레이어와 각 항목에 대한 정량적 분석을 통해 하천공간의 DB를 구축하였다. 이와 같이 하천공간 DB 구축을 통해 전국 하천관리체계를 위한 기초자료를 구축하고자 하였다.

  • PDF

A Study of AI-based Monitoring Techniques for Land-based Debris in Stream (AI기반 하천 부유쓰레기 모니터링 기술 연구)

  • Kyungsu Lee;Haein Yoon;Jonghwa Won;Sang Hwa Jung
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.137-137
    • /
    • 2023
  • 해양쓰레기는 해안의 심미적 가치 저하뿐만 아니라 생태계 파괴, 유령 어업에 따른 수산업 피해 등의 사회적·환경적 문제를 발생시키며, 그중 70% 이상은 육상 기인으로 플라스틱 및 기타 쓰레기가 주를 이루는 해외와 달리 국내의 경우 다량의 초목류를 포함하고 있다. 다양한 부유쓰레기에 대한 기존의 해양쓰레기량 추정의 한계와 하천·하구 쓰레기 수거의 효율화를 위해 해양으로 유입되는 부유쓰레기 방지를 위한 실효성 있는 대책 수립이 필요한 실정이다. 본 연구는 해양 유입 전 하천의 차단시설에 차집된 부유쓰레기의 수거 효율화 및 지속가능한 해양쓰레기 데이터 구축을 위해 AI기반의 기술을 통해 부유쓰레기 성상 분석 기법(Object Detection)과 차집량 분석 기법(Semantic Segmentation)을 활용하였다. 실제와 유사한 데이터 수집을 위해 다양한 하천 환경(정수조, 소하천, 급경사수로)에 대해 탁도(녹조, 유사), 광량, 쓰레기형상, 초목류 함량, 날씨(소하천), 유속(급경사수로) 등의 실험조건에 대하여 해양쓰레기 분류 기준 및 통계를 바탕으로 부유쓰레기 종류 선정하여 학습을 위한 데이터를 수집하였다. 학습 목적에 따라 구분하여 라벨링(Bounding box, Polygon)을 수행하고, 각 분석 기법별 전이학습을 통해 Phase 1(정수조), Phase 2(소하천), Phase 3(급경사수로) 순서로 모델을 고도화하였다. 성상 분석을 위해 YOLO v4를 활용하여 Train, Test DataSet(9:1)을 구성하고 학습 및 평가는 Iteration마다의 mAP, loss 값을 통해 비교하였으며, 학습 Phase에 따라 모델 고도화로 Test Set의 mAP 값이 성상별로 높아짐을 확인하였으며, 차집량 분석을 위해 Unet을 활용하여 Train, Test, Validation DataSet(8.5:1:0.5)을 구성하고 epoch별 IoU(intersection over Union), F1-score, loss 값을 비교하여 정성적, 정량적 평가 모두 Phase 3에서 가장 높은 성능을 확인하였다. 향후 하천 환경에서의 다양한 영양인자별 분석을 통해 주요 영향인자 도출 및 Hyper Parameter 최적화를 통한 모델 고도화로 인해 활용성이 높아질 것으로 판단된다.

  • PDF