DOI QR코드

DOI QR Code

Chronic cold stress-induced myocardial injury: effects on oxidative stress, inflammation and pyroptosis

  • Hongming Lv (College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University) ;
  • Yvxi He (College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University) ;
  • Jingjing Wu (College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University) ;
  • Li Zhen (College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University) ;
  • Yvwei Zheng (College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University)
  • Received : 2022.07.09
  • Accepted : 2022.09.21
  • Published : 2023.01.31

Abstract

Background: Hypothermia is a crucial environmental factor that elevates the risk of cardiovascular disease, but the underlying effect is unclear. Objectives: This study examined the role of cold stress (CS) in cardiac injury and its underlying mechanisms. Methods: In this study, a chronic CS-induced myocardial injury model was used; mice were subjected to chronic CS (4℃) for three hours per day for three weeks. Results: CS could result in myocardial injury by inducing the levels of heat shock proteins 70 (HSP70), enhancing the generation of creatine phosphokinase-isoenzyme (CKMB) and malondialdehyde (MDA), increasing the contents of tumor necrosis factor-α (TNF-α), high mobility group box 1 (HMGB1) interleukin1b (IL-1β), IL-18, IL-6, and triggering the depletion of superoxide dismutase (SOD), catalase (CAT), and glutathione (GSH). Multiple signaling pathways were activated by cold exposure, including pyroptosis-associated NOD-like receptor 3 (NLRP3)-regulated caspase-1-dependent/Gasdermin D (GSDMD), inflammation-related toll-like receptor 4 (TLR4)/myeloid differentiation factor 88 (MyD88)-mediated nuclear factor kappa B (NF-κB), and mitogen-activated protein kinase (MAPK), as well as oxidative stressinvolved thioredoxin-1/thioredoxin-interacting protein (Txnip) signaling pathways, which play a pivotal role in myocardial injury resulting from hypothermia. Conclusions: These findings provide new insights into the increased risk of cardiovascular disease at extremely low temperatures.

Keywords

References

  1. Basu R, Samet JM. Relation between elevated ambient temperature and mortality: a review of the epidemiologic evidence. Epidemiol Rev. 2002;24(2):190-202. https://doi.org/10.1093/epirev/mxf007
  2. Gasparrini A, Guo Y, Hashizume M, Lavigne E, Zanobetti A, Schwartz J, et al. Mortality risk attributable to high and low ambient temperature: a multicountry observational study. Lancet. 2015;386(9991):369-375. https://doi.org/10.1016/S0140-6736(14)62114-0
  3. Liu Y, Xu B, Hu Y, Liu P, Lian S, Lv H, et al. O-GlcNAc / Akt pathway regulates glucose metabolism and reduces apoptosis in liver of piglets with acute cold stress. Cryobiology. 2021;100:125-132. https://doi.org/10.1016/j.cryobiol.2021.02.008
  4. Phung D, Thai PK, Guo Y, Morawska L, Rutherford S, Chu C. Ambient temperature and risk of cardiovascular hospitalization: an updated systematic review and meta-analysis. Sci Total Environ. 2016;550:1084-1102. https://doi.org/10.1016/j.scitotenv.2016.01.154
  5. Bunker A, Wildenhain J, Vandenbergh A, Henschke N, Rocklov J, Hajat S, et al. Effects of air temperature on climate-sensitive mortality and morbidity outcomes in the elderly; a systematic review and metaanalysis of epidemiological evidence. EBioMedicine. 2016;6:258-268. https://doi.org/10.1016/j.ebiom.2016.02.034
  6. Song X, Wang S, Hu Y, Yue M, Zhang T, Liu Y, et al. Impact of ambient temperature on morbidity and mortality: an overview of reviews. Sci Total Environ. 2017;586:241-254. https://doi.org/10.1016/j.scitotenv.2017.01.212
  7. Zhang Y, Li L, Hua Y, Nunn JM, Dong F, Yanagisawa M, et al. Cardiac-specific knockout of ET(A) receptor mitigates low ambient temperature-induced cardiac hypertrophy and contractile dysfunction. J Mol Cell Biol. 2012;4(2):97-107. https://doi.org/10.1093/jmcb/mjs002
  8. Jiang S, Guo R, Zhang Y, Zou Y, Ren J. Heavy metal scavenger metallothionein mitigates deep hypothermia-induced myocardial contractile anomalies: role of autophagy. Am J Physiol Endocrinol Metab. 2013;304(1):E74-E86. https://doi.org/10.1152/ajpendo.00176.2012
  9. Zhang Y, Hu N, Hua Y, Richmond KL, Dong F, Ren J. Cardiac overexpression of metallothionein rescues cold exposure-induced myocardial contractile dysfunction through attenuation of cardiac fibrosis despite cardiomyocyte mechanical anomalies. Free Radic Biol Med. 2012;53(2):194-207. https://doi.org/10.1016/j.freeradbiomed.2012.04.005
  10. Van Opdenbosch N, Lamkanfi M. Caspases in cell death, inflammation, and disease. Immunity. 2019;50(6):1352-1364. https://doi.org/10.1016/j.immuni.2019.05.020
  11. Schwarzer R, Laurien L, Pasparakis M. New insights into the regulation of apoptosis, necroptosis, and pyroptosis by receptor interacting protein kinase 1 and caspase-8. Curr Opin Cell Biol. 2020;63:186-193. https://doi.org/10.1016/j.ceb.2020.02.004
  12. Shi J, Zhao Y, Wang K, Shi X, Wang Y, Huang H, et al. Cleavage of GSDMD by inflammatory caspases determines pyroptotic cell death. Nature. 2015;526(7575):660-665. https://doi.org/10.1038/nature15514
  13. Kayagaki N, Stowe IB, Lee BL, O'Rourke K, Anderson K, Warming S, et al. Caspase-11 cleaves gasdermin D for non-canonical inflammasome signalling. Nature. 2015;526(7575):666-671. https://doi.org/10.1038/nature15541
  14. Xue Y, Enosi Tuipulotu D, Tan WH, Kay C, Man SM. Emerging activators and regulators of inflammasomes and pyroptosis. Trends Immunol. 2019;40(11):1035-1052. https://doi.org/10.1016/j.it.2019.09.005
  15. Hou L, Yang Z, Wang Z, Zhang X, Zhao Y, Yang H, et al. NLRP3/ASC-mediated alveolar macrophage pyroptosis enhances HMGB1 secretion in acute lung injury induced by cardiopulmonary bypass. Lab Invest. 2018;98(8):1052-1064. https://doi.org/10.1038/s41374-018-0073-0
  16. Nasoohi S, Ismael S, Ishrat T. Thioredoxin-interacting protein (TXNIP) in cerebrovascular and neurodegenerative diseases: regulation and implication. Mol Neurobiol. 2018;55(10):7900-7920. https://doi.org/10.1007/s12035-018-0917-z
  17. Mai W, Xu Y, Xu J, Zhao D, Ye L, Yu G, et al. Berberine inhibits nod-like receptor family pyrin domain containing 3 inflammasome activation and pyroptosis in nonalcoholic steatohepatitis via the ROS/TXNIP axis. Front Pharmacol. 2020;11:185.
  18. Yuan X, Zheng Y, Chen C, Wang C. Anisodamine inhibits endoplasmic reticulum stress-associated TXNIP/NLRP3 inflammasome activation in rhabdomyolysis-induced acute kidney injury. Apoptosis. 2017;22(12):1524-1531. https://doi.org/10.1007/s10495-017-1414-y
  19. Zhou R, Tardivel A, Thorens B, Choi I, Tschopp J. Thioredoxin-interacting protein links oxidative stress to inflammasome activation. Nat Immunol. 2010;11(2):136-140. https://doi.org/10.1038/ni.1831
  20. Lacagnina MJ, Watkins LR, Grace PM. Toll-like receptors and their role in persistent pain. Pharmacol Ther. 2018;184:145-158. https://doi.org/10.1016/j.pharmthera.2017.10.006
  21. Yang J, Wise L, Fukuchi KI. TLR4 cross-talk with nlrp3 inflammasome and complement signaling pathways in Alzheimer's disease. Front Immunol. 2020;11:724.
  22. Lang L, Xu B, Yuan J, Li S, Lian S, Chen Y, et al. GABA-mediated activated microglia induce neuroinflammation in the hippocampus of mice following cold exposure through the NLRP3 inflammasome and NF-κB signaling pathways. Int Immunopharmacol. 2020;89 Pt B:106908.
  23. Shi H, Yao R, Lian S, Liu P, Liu Y, Yang YY, et al. Regulating glycolysis, the TLR4 signal pathway and expression of RBM3 in mouse liver in response to acute cold exposure. Stress. 2019;22(3):366-376. https://doi.org/10.1080/10253890.2019.1568987
  24. Wang X, Li G, Liu L, Westerdahl D, Jin X, Pan X. Effects of extreme temperatures on cause-specific cardiovascular mortality in China. Int J Environ Res Public Health. 2015;12(12):16136-16156. https://doi.org/10.3390/ijerph121215042
  25. Okamoto-Mizuno K, Tsuzuki K, Mizuno K, Ohshiro Y. Effects of low ambient temperature on heart rate variability during sleep in humans. Eur J Appl Physiol. 2009;105(2):191-197. https://doi.org/10.1007/s00421-008-0889-1
  26. Chen F, Chen ZQ, Zhong GL, Zhu JJ. Nicorandil inhibits TLR4/MyD88/NF-κB/NLRP3 signaling pathway to reduce pyroptosis in rats with myocardial infarction. Exp Biol Med (Maywood). 2021;246(17):1938-1947. https://doi.org/10.1177/15353702211013444
  27. Panda VS, Naik SR. Cardioprotective activity of Ginkgo biloba Phytosomes in isoproterenol-induced myocardial necrosis in rats: a biochemical and histoarchitectural evaluation. Exp Toxicol Pathol. 2008;60(4-5):397-404. https://doi.org/10.1016/j.etp.2008.03.010
  28. Yin Z, Ding G, Chen X, Qin X, Xu H, Zeng B, et al. Beclin1 haploinsufficiency rescues low ambient temperature-induced cardiac remodeling and contractile dysfunction through inhibition of ferroptosis and mitochondrial injury. Metabolism. 2020;113:154397. https://doi.org/10.1016/s0026-0495(20)30288-2
  29. Asea A, Rehli M, Kabingu E, Boch JA, Bare O, Auron PE, et al. Novel signal transduction pathway utilized by extracellular HSP70: role of toll-like receptor (TLR) 2 and TLR4. J Biol Chem. 2002;277(17):15028-15034. https://doi.org/10.1074/jbc.M200497200
  30. Sable A, Rai KM, Choudhary A, Yadav VK, Agarwal SK, Sawant SV. Inhibition of heat shock proteins HSP90 and HSP70 induce oxidative stress, suppressing cotton fiber development. Sci Rep. 2018;8(1):3620.
  31. Yin K, Zhao L, Feng D, Ma W, Liu Y, Wang Y, et al. Resveratrol attenuated low ambient temperatureinduced myocardial hypertrophy via inhibiting cardiomyocyte apoptosis. Cell Physiol Biochem. 2015;35(6):2451-2462. https://doi.org/10.1159/000374045
  32. Cong P, Liu Y, Liu N, Zhang Y, Tong C, Shi L, et al. Cold exposure induced oxidative stress and apoptosis in the myocardium by inhibiting the Nrf2-Keap1 signaling pathway. BMC Cardiovasc Disord. 2018;18(1):36.
  33. Guo H, Callaway JB, Ting JP. Inflammasomes: mechanism of action, role in disease, and therapeutics. Nat Med. 2015;21(7):677-687. https://doi.org/10.1038/nm.3893
  34. Wu C, Lu W, Zhang Y, Zhang G, Shi X, Hisada Y, et al. Inflammasome activation triggers blood clotting and host death through pyroptosis. Immunity. 2019;50(6):1401-1411.e4. https://doi.org/10.1016/j.immuni.2019.04.003
  35. Wang Q, Wu J, Zeng Y, Chen K, Wang C, Yang S, et al. Pyroptosis: a pro-inflammatory type of cell death in cardiovascular disease. Clin Chim Acta. 2020;510:62-72. https://doi.org/10.1016/j.cca.2020.06.044
  36. He WT, Wan H, Hu L, Chen P, Wang X, Huang Z, et al. Gasdermin D is an executor of pyroptosis and required for interleukin-1β secretion. Cell Res. 2015;25(12):1285-1298. https://doi.org/10.1038/cr.2015.139
  37. Liu X, Zhang Z, Ruan J, Pan Y, Magupalli VG, Wu H, et al. Inflammasome-activated gasdermin D causes pyroptosis by forming membrane pores. Nature. 2016;535(7610):153-158. https://doi.org/10.1038/nature18629
  38. Broz P, Dixit VM. Inflammasomes: mechanism of assembly, regulation and signalling. Nat Rev Immunol. 2016;16(7):407-420. https://doi.org/10.1038/nri.2016.58
  39. Zhang X, Du Q, Yang Y, Wang J, Dou S, Liu C, et al. The protective effect of Luteolin on myocardial ischemia/reperfusion (I/R) injury through TLR4/NF-κB/NLRP3 inflammasome pathway. Biomed Pharmacother. 2017;91:1042-1052. https://doi.org/10.1016/j.biopha.2017.05.033
  40. Wang BF, Yoshioka J. The emerging role of thioredoxin-interacting protein in myocardial ischemia/ reperfusion injury. J Cardiovasc Pharmacol Ther. 2017;22(3):219-229. https://doi.org/10.1177/1074248416675731