• Title/Summary/Keyword: bounding analysis

Search Result 92, Processing Time 0.029 seconds

Development of an Immunosensor to Detect Rat IgG Using Impedance Analyser

  • No D. H.;Kang S.;Kim G. Y.;Chung S. H.;Park Y. H.;Om A. S.;Cho S. I.
    • Agricultural and Biosystems Engineering
    • /
    • v.5 no.1
    • /
    • pp.21-24
    • /
    • 2004
  • Antibody based biosensors are very selective and ultra-sensitive. Antigen-antibody reactions have been used in immunoassays. In this research, a biosensor which uses antigen-antibody reaction was developed to measure and detect rat IgG. Because the antigen-antibody reaction is a physical bounding between antigen and antibody, there are several ways to measure an antigen-antibody reaction. Among the methods, impedance analysis has short measuring time and possibilities of analyzing various properties of the reaction using frequency analysis. Rat IgG could be detected with developed biosensor and impedance analyzer. The biosensor showed good repeatability and availability of detecting concentration changes of rat IgG.

  • PDF

The Binarization of Text Regions in Natural Scene Images, based on Stroke Width Estimation (자연 영상에서 획 너비 추정 기반 텍스트 영역 이진화)

  • Zhang, Chengdong;Kim, Jung Hwan;Lee, Guee Sang
    • Smart Media Journal
    • /
    • v.1 no.4
    • /
    • pp.27-34
    • /
    • 2012
  • In this paper, a novel text binarization is presented that can deal with some complex conditions, such as shadows, non-uniform illumination due to highlight or object projection, and messy backgrounds. To locate the target text region, a focus line is assumed to pass through a text region. Next, connected component analysis and stroke width estimation based on location information of the focus line is used to locate the bounding box of the text region, and each box of connected components. A series of classifications are applied to identify whether each CC(Connected component) is text or non-text. Also, a modified K-means clustering method based on an HCL color space is applied to reduce the color dimension. A text binarization procedure based on location of text component and seed color pixel is then used to generate the final result.

  • PDF

Nonlinear interaction behaviour of infilled frame-isolated footings-soil system subjected to seismic loading

  • Agrawal, Ramakant;Hora, M.S.
    • Structural Engineering and Mechanics
    • /
    • v.44 no.1
    • /
    • pp.85-107
    • /
    • 2012
  • The building frame and its foundation along with the soil on which it rests, together constitute a complete structural system. In the conventional analysis, a structure is analysed as an independent frame assuming unyielding supports and the interactive response of soil-foundation is disregarded. This kind of analysis does not provide realistic behaviour and sometimes may cause failure of the structure. Also, the conventional analysis considers infill wall as non-structural elements and ignores its interaction with the bounding frame. In fact, the infill wall provides lateral stiffness and thus plays vital role in resisting the seismic forces. Thus, it is essential to consider its effect especially in case of high rise buildings. In the present research work the building frame, infill wall, isolated column footings (open foundation) and soil mass are considered to act as a single integral compatible structural unit to predict the nonlinear interaction behaviour of the composite system under seismic forces. The coupled isoparametric finite-infinite elements have been used for modelling of the interaction system. The material of the frame, infill and column footings has been assumed to follow perfectly linear elastic relationship whereas the well known hyperbolic soil model is used to account for the nonlinearity of the soil mass.

NUMERICAL ANALYSIS OF NON-EQUILIBRIUM HYDRATE PELLET DECOMPOSITION (하이드레이트 펠릿의 비평형 분해과정 수치해석)

  • Kang, Jung-Ho;Nam, Jin-Hyun;Kim, Charn-Jung;Song, Myung-Ho
    • Journal of computational fluids engineering
    • /
    • v.13 no.4
    • /
    • pp.50-57
    • /
    • 2008
  • The prediction of hydrate pellet decomposition characteristics is required to design the regasification process of GTS (gas to solid) technology, which is considered as an economic alternative for LNG technology to transport natural gas produced from small and stranded gas wells. Mathematical model based on the conservation principles, the phase equilibrium relation, equation of gas state and phase change kinetics was set up and numerical solution procedure employing volume averaged fixed grid formulation and extended enthalpy method are implemented. Initially, porous methane hydrate pellet is at uniform temperature and pressure within hydrate stable region. The pressure starts to decrease with a fixed rate down to the final pressure and is kept constant afterwards while the bounding surface of pellet is heated by convection. The predicted convective heat and mass transfer accompanied by the decomposed gas flow through hydrate/ice solid matrix is reported focused on the comparison of spherical and cylindrical pellets having the same effective radius.

Higher Order Zig-Zag Theory for Composite Shell under Thermo-mechanical load (열, 기계 하중을 고려한 지그재그 고차 복합재 쉘 이론)

  • Oh Jin-Ho;Cho Maeng-Hyo
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2005.04a
    • /
    • pp.217-224
    • /
    • 2005
  • A higher order zig-zag shell theory is developed to refine the predictions of the mechanical and thermal behaviors partially coupled. The in-plane displacement fields are constructed by superimposing linear zig-zag field to the smooth globally cubic varying field through the thickness. Smooth parabolic distribution through the thickness is assumed in the out-of-plane displacement in order to consider transverse normal deformation and stress. The layer-dependent degrees of freedom of displacement fields are expressed in terms of reference primary degrees of freedom by applying interface continuity conditions as well as bounding surface conditions of transverse shear stresses. Thus the proposed theory has only seven primary unknowns and they do not depend upon the number of layers. In the description of geometry and deformation of shell surface, all rigorous exact expressions are used. Through the numerical examples of partially coupled analysis, the accuracy and efficiency of the present theory are demonstrated. The present theory is suitable in the predictions of deformation and stresses of thick composite shell under mechanical and thermal loads combined.

  • PDF

The vectorization and recognition of circuit symbols for electronic circuit drawing management (전자회로 도면관리를 위한 벡터화와 회로 기호의 인식)

  • 백영묵;석종원;진성일;황찬식
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.33B no.3
    • /
    • pp.176-185
    • /
    • 1996
  • Transformin the huge size of drawings into a suitable format for CAD system and recognizng the contents of drawings are the major concerans in the automated analysis of engineering drawings. This paper proposes some methods for text/graphics separation, symbol extraction, vectorization and symbol recognition with the object of applying them to electronic cirucit drawings. We use MBR (Minimum bounding rectangle) and size of isolated region on the drawings for separating text and graphic regions. Characteristics parameters such as the number of pixels, the length of circular constant and the degree of round shape are used for extracting loop symbols and geometric structures for non-loop symbols. To recognize symbols, nearest netighbor between FD (foruier descriptor) of extractd symbols and these of classification reference symbols is used. Experimental results show that the proposed method can generate compact vector representation of extracted symbols and perform the scale change and rotation of extracted symbol using symbol vectorization. Also we achieve an efficient searching of circuit drawings.

  • PDF

HIGHER ORDER ZIG-ZAG PLATE THEORY FOR COUPLED THERMO-ELECTRIC-MECHANICAL SMART STRUCTURES (열-기계-전기 하중이 완전 연계된 지능 복합재 평판의 지그재그 고차이론)

  • 오진호;조맹효
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2001.05a
    • /
    • pp.114-117
    • /
    • 2001
  • A higher order zig-zag plate theory is developed to refine accurately predict fully coupled of the mechanical, thermal, and electric behaviors. Both the displacement and temperature fields through the thickness are constructed by superimposing linear zig-zag field to the smooth globally cubic varying field. Smooth parabolic distribution through the thickness is assumed in the transverse deflection in order to consider transverse normal deformation. Linear zig-zag form is adopted in the electric field. The layer-dependent degrees of freedom of displacement and temperature fields are expressed in terms of reference primary degrees of freedom by applying interface continuity conditions as well as bounding surface conditions of transverse shear stresses and transverse heat flux The numerical examples of coupled and uncoupled analysis are demonstrated the accuracy and efficiency of the present theory. The present theory is suitable for the predictions of fully coupled behaviors of thick smart composite plate under mechanical, thermal, and electric loadings.

  • PDF

Bayesian Variable Selection in the Proportional Hazard Model with Application to DNA Microarray Data

  • Lee, Kyeon-Eun;Mallick, Bani K.
    • Proceedings of the Korean Society for Bioinformatics Conference
    • /
    • 2005.09a
    • /
    • pp.357-360
    • /
    • 2005
  • In this paper we consider the well-known semiparametric proportional hazards (PH) models for survival analysis. These models are usually used with few covariates and many observations (subjects). But, for a typical setting of gene expression data from DNA microarray, we need to consider the case where the number of covariates p exceeds the number of samples n. For a given vector of response values which are times to event (death or censored times) and p gene expressions (covariates), we address the issue of how to reduce the dimension by selecting the significant genes. This approach enable us to estimate the survival curve when n < < p. In our approach, rather than fixing the number of selected genes, we will assign a prior distribution to this number. The approach creates additional flexibility by allowing the imposition of constraints, such as bounding the dimension via a prior, which in effect works as a penalty. To implement our methodology, we use a Markov Chain Monte Carlo (MCMC) method. We demonstrate the use of the methodology to diffuse large B-cell lymphoma (DLBCL) complementary DNA(cDNA) data.

  • PDF

Analytical Study on the Free Vibration of Two Rectangular Plates Coupled with Fluid (유체로 연성된 두 직사각 평판의 고유진동에 관한 해석적 연구)

  • 유계형;정경훈;이성철
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.647-651
    • /
    • 2002
  • This study dealt with the free vibration of two identical rectangular plates coupled with fluid. In order to investigate the vibration characteristics of fluid-coupled rectangular plates, an analytical method based on the finite Fourier series expansion and Rayleigh-Ritz method was suggested. A commercial computer code, ANSYS was used to perform finite element analysis and we investigated the vibration characteristics with mode shapes and natural frequencies. As a result, the transverse vibration modes, in-phase and out-of-phase, were observed alternately in the fluid-coupled system. The effect of fluid bounding and plate boundary condition on the fluid-coupled natural frequency were investigated. It was shown that the mode numbers increased, the normalized natural frequencies monotonically increased.

  • PDF

Effect of the laser pulse on transient waves in a non-local thermoelastic medium under Green-Naghdi theory

  • Sarkar, Nantu;Mondal, Sudip;Othman, Mohamed I.A.
    • Structural Engineering and Mechanics
    • /
    • v.74 no.4
    • /
    • pp.471-479
    • /
    • 2020
  • This paper aims to study the effect of the elastic nonlocality on the transient waves in a two-dimensional thermoelastic medium influenced by thermal loading due to the laser pulse. The bounding plane surface is heated by a non-Gaussian laser beam. The problem is discussed under the Eringen's nonlocal elasticity model and the Green-Naghdi (G-N) theory with and without energy dissipation. The normal mode analysis method is used to get the exact expressions for the physical quantities which illustrated graphically by comparison and discussion. The effects of nonlocality and different values of time on the displacement, the stresses, and the temperature were made numerically. All the computed results obtained have been depicted graphically and explained.