• Title/Summary/Keyword: boundary layer wind-tunnel

Search Result 227, Processing Time 0.022 seconds

Swirl ratio effects on tornado vortices in relation to the Fujita scale

  • Hangan, H.;Kim, J.D.
    • Wind and Structures
    • /
    • v.11 no.4
    • /
    • pp.291-302
    • /
    • 2008
  • Three-dimensional engineering simulations of momentum-driven tornado-like vortices are conducted to investigate the flow dynamics dependency on swirl ratio and the possible relation with real tornado Fujita scales. Numerical results are benchmarked against the laboratory experimental results of Baker (1981) for a fixed swirl ratio: S = 0.28. The simulations are then extended for higher swirl ratios up to S = 2 and the variation of the velocity and pressure flow fields are observed. The flow evolves from the formation of a laminar vortex at low swirl ratio to turbulent vortex breakdown, followed by the vortex touch down at higher swirls. The high swirl ratios results are further matched with full scale data from the Spencer, South Dakota F4 tornado of May 30, 1998 (Sarkar, et al. 2005) and approximate velocity and length scales are determined.

Aeroelastic model test of a 610 m-high TV tower with complex shape and structure

  • Ding, Quanshun;Zhu, Ledong
    • Wind and Structures
    • /
    • v.25 no.4
    • /
    • pp.361-379
    • /
    • 2017
  • In view of the importance of the wind-structure interaction for tall and slender structures, an aeroelastic model test of the 610m-high TV tower with a complex and unique structural configuration and appearance carried out successfully. The assembled aeroelastic model of the TV tower with complex shape and structure was designed and made to ensure the similarities of the major natural frequencies and the corresponding mode shapes. The simulation of the atmospheric boundary layer with higher turbulent intensity is presented. Since the displacement and acceleration responses at several measurement sections were directly measured in the wind tunnel test, a multi-mode approach was presented to indirectly estimate the displacement and acceleration responses at arbitrary structural floors based on the measured ones. It can be seen that it is remarkable for the displacement and acceleration responses of the TV tower in the two horizontal directions under wind loads and is small for the dynamic response of the torsional displacement and acceleration.

Computational modeling of the atmospheric boundary layer using various two-equation turbulence models

  • Juretic, Franjo;Kozmar, Hrvoje
    • Wind and Structures
    • /
    • v.19 no.6
    • /
    • pp.687-708
    • /
    • 2014
  • The performance of the $k-{\varepsilon}$ and $k-{\omega}$ two-equation turbulence models was investigated in computational simulations of the neutrally stratified atmospheric boundary layer developing above various terrain types. This was achieved by using a proposed methodology that mimics the experimental setup in the boundary layer wind tunnel and accounts for a decrease in turbulence parameters with height, as observed in the atmosphere. An important feature of this approach is pressure regulation along the computational domain that is additionally supported by the nearly constant turbulent kinetic energy to Reynolds shear stress ratio at all heights. In addition to the mean velocity and turbulent kinetic energy commonly simulated in previous relevant studies, this approach focuses on the appropriate prediction of Reynolds shear stress as well. The computational results agree very well with experimental results. In particular, the difference between the calculated and measured mean velocity, turbulent kinetic energy and Reynolds shear stress profiles is less than ${\pm}10%$ in most parts of the computational domain.

The aerodynamic characteristics of twin column, high rise bridge towers

  • Ricciardelli, Francesco;Vickery, Barry J.
    • Wind and Structures
    • /
    • v.1 no.3
    • /
    • pp.225-241
    • /
    • 1998
  • The high-rise supporting towers of long-span suspension and cable-stayed bridges commonly comprise a pair of slender prisms of roughly square cross-section with a center-to-centre spacing of from perhaps 2 to 6 widths and connected by one or more cross-ties. The tower columns may have a constant spacing as common for suspension bridges or the spacing may reduce towards the top of the tower. The present paper is concerned with the aerodynamics of such towers and describes an experimental investigation of the overall aerodynamic forces acting on a pair of square cylinders in two-dimensional flow. Wind tunnel pressure measurements were carried out in smooth flow and with a longitudinal intensity of turbulence 0.10. Different angles of attack were considered between $0^{\circ}$ and $90^{\circ}$, and separations between the two columns from twice to 13 times the side width of the column. The mean values of the overall forces proved to be related to the bias introduced in the flow by the interaction between the two cylinders; the overall rms forces are related to the level of coherence between the shedding-induced forces on the two cylinders and to their phase. Plots showing the variation of the force coefficients and Strouhal number as a function of the separation, together with the force coefficients spectra and lift cross-correlation functions are presented in the paper.

The use of linear stochastic estimation for the reduction of data in the NIST aerodynamic database

  • Chen, Y.;Kopp, G.A.;Surry, D.
    • Wind and Structures
    • /
    • v.6 no.2
    • /
    • pp.107-126
    • /
    • 2003
  • This paper describes a simple and practical approach through the application of Linear Stochastic Estimation (LSE) to reconstruct wind-induced pressure time series from the covariance matrix for structural load analyses on a low building roof. The main application of this work would be the reduction of the data storage requirements for the NIST aerodynamic database. The approach is based on the assumption that a random pressure field can be estimated as a linear combination of some other known pressure time series by truncating nonlinear terms of a Taylor series expansion. Covariances between pressure time series to be simulated and reference time series are used to calculate the estimation coefficients. The performance using different LSE schemes with selected reference time series is demonstrated by the reconstruction of structural load time series in a corner bay for three typical wind directions. It is shown that LSE can simulate structural load time series accurately, given a handful of reference pressure taps (or even a single tap). The performance of LSE depends on the choice of the reference time series, which should be determined by considering the balance between the accuracy, data-storage requirements and the complexity of the approach. The approach should only be used for the determination of structural loads, since individual reconstructed pressure time series (for local load analyses) will have larger errors associated with them.

Effect of Boundary Layer Thickness on the Flow Around a Rectangular Prism (직사각형 프리즘 주위의 유동구조에 대한 경계층 두께의 영향)

  • Ji, Ho-Seong;Kim, Kyung-Chun;Lee, Seung-Hong;Boo, Jeong-Sook
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.6
    • /
    • pp.893-901
    • /
    • 2002
  • Effect of boundary layer thickness on the flow characteristics around a rectangular prism has been investigated by using a PIV(Particle Image Velocimetry) technique. Three different boundary layers(thick, medium and thin)were generated in the Atmospheric Boundary Layer Wind Tunnel at Pusan National University. The thick boundary layer having 670 mm thickness was generated by using spires and roughness elements. The medium thickness of boundary layer($\delta$=270 mm) was the natural turbulent boundary layer at the test section floor with fairly long developing length(18 m). The thin boundary layer($\delta$=36.5 mm) was generated on the smooth panel elevated 70cm from the wind tunnel floor. The Reynolds number based on the free stream velocity(3 ㎧) and the height of the model(40 mm) was 7.9$\times$10$^3$. The mean velocity vector fields and turbulent kinetic energy distributions were measured and compared. The effect of boundary layer thickness was clearly observed not only in the length of separation bubble but also in the location of reattachment point. The thinner the boundary layer thickness, the higher the turbulent kinetic energy Peak around the model roofbecame. It is strongly recommended that the height ratio between the model and the approaching boundary layer thickness should be encountered as a major parameter.

Wind loading of a finite prism: aspect ratio, incidence and boundary layer thickness effects

  • Heng, Herman;Sumner, David
    • Wind and Structures
    • /
    • v.31 no.3
    • /
    • pp.255-267
    • /
    • 2020
  • A systematic set of low-speed wind tunnel experiments was performed at Re = 6.5×104 and 1.1×105 to study the mean wind loading experienced by surface-mounted finite-height square prisms for different aspect ratios, incidence angles, and boundary layer thicknesses. The aspect ratio of the prism was varied from AR = 1 to 11 in small increments and the incidence angle was changed from α = 0° to 45° in increments of 1°. Two different boundary layer thicknesses were used: a thin boundary layer with δ/D = 0.8 and a thick boundary layer with δ/D = 2.0-2.2. The mean drag and lift coefficients were strong functions of AR, α, and δ/D, while the Strouhal number was mostly influenced by α. The critical incidence angle, at which the prism experiences minimum drag, maximum lift, and highest vortex shedding frequency, increased with AR, converged to a value of αc = 18° ± 2° once AR was sufficiently high, and was relatively insensitive to changes in δ/D. A local maximum value of mean drag coefficient was identified for higher-AR prisms at low α. The overall behaviour of the force coefficients and Strouhal number with AR suggests the possibility of three flow regimes.

Development of an active gust generation mechanism on a wind tunnel for wind engineering and industrial aerodynamics applications

  • Haan, Fred L. Jr.;Sarkar, Partha P.;Spencer-Berger, Nicholas J.
    • Wind and Structures
    • /
    • v.9 no.5
    • /
    • pp.369-386
    • /
    • 2006
  • A combination Aerodynamic/Atmospheric Boundary Layer (AABL) Wind and Gust Tunnel with a unique active gust generation capability has been developed for wind engineering and industrial aerodynamics applications. This facility is a cornerstone component of the Wind Simulation and Testing (WiST) Laboratory of the Department of Aerospace Engineering at Iowa State University (ISU). The AABL Wind and Gust tunnel is primarily a closed-circuit tunnel that can be also operated in open-return mode. It is designed to accommodate two test sections ($2.44m{\times}1.83m$ and $2.44m{\times}2.21m$) with a maximum wind speed capability of 53 m/s. The gust generator is capable of producing non-stationary gust magnitudes around 27% of the mean flow speed. This paper describes the motivation for developing this gust generator and the work related to its design and testing.

Wind tunnel study of plume dispersion with varying source emission configurations

  • Wittwer, Adrian R.;Loredo-Souza, Acir M.;Schettini, Edith B. Camano;Castro, Hugo G.
    • Wind and Structures
    • /
    • v.27 no.6
    • /
    • pp.417-430
    • /
    • 2018
  • The concentration fields in the proximities of a local gas emission source are experimentally analyzed in several combinations of wind incidences and source emissions. These conditions are determined by the plume buoyancy, emission velocity and incident flow wind speed. Concentration measurements are performed by an aspirating probe in a boundary layer wind tunnel. The analysis included the mean concentration values and the intensity of concentration fluctuations in a neutral atmospheric boundary layer flow. Different configurations are tested: an isolated stack in a homogeneous terrain and a stack with a bluff body in close proximity, located windward and leeward from the emission source. The experimental mean concentration values are contrasted with Gaussian profiles and the dilution factor is analyzed with respect to the empirical curves of the minimum dilution. Finally, a study on the plume intermittency is performed in a cross-sectional plane near the emission source. It is possible to highlight the following observations: a) plume vertical asymmetry in the case of an isolated emission source, b) significant differences in the dispersion process related to the relative location of the emission source and bluff body effects, and c) different probabilistic behavior of the concentration fluctuation data in a cross-sectional measurement plane inside the plume.

Numerical Analysis on the Internal Flow Field Characteristics of Wind Tunnel According to Contraction Type (수축부 형상에 따른 풍동 내부유동장 특성에 대한 수치해석)

  • Kim, Jang-Kweon;Oh, Seok-Hyung
    • Journal of Power System Engineering
    • /
    • v.21 no.6
    • /
    • pp.5-12
    • /
    • 2017
  • The steady-state, incompressible and three-dimensional numerical analysis was carried out to investigate the internal flow fields characteristics according to wind tunnel contraction type. The turbulence model used in this study is a realizable $k-{\varepsilon}$ modified from the standard $k-{\varepsilon}$ model. As a results, the distribution of the axial mean velocity components along the central axis of the flow model is very similar to the ASME and BE types, and the cubic and cosine types. When the flow passes through the interior space of the analytical models, the flow resistance at the inlet of the plenum chamber is the largest at BS type contraction, but the smallest at cubic type contraction. The boundary layer thickness is the smallest in the cosine type contraction as the axial distance increases. The maximum turbulent kinetic energy in the test section is the smallest in the order of the contraction of cubic type and cosine type. Comprehensively, cubic type contraction is the best choice for wind tunnel performance, and cosine type contraction can be the next best solution.