DOI QR코드

DOI QR Code

Wind tunnel study of plume dispersion with varying source emission configurations

  • Wittwer, Adrian R. (Laboratorio de Aerodinamica, Facultad de Ingenieria, Universidad Nacional del Nordeste (UNNE)) ;
  • Loredo-Souza, Acir M. (Laboratorio de Aerodinamica das Construcoes, Universidade Federal do Rio Grande do Sul) ;
  • Schettini, Edith B. Camano (Instituto de Pesquisas Hidraulicas, Universidade Federal do Rio Grande do Sul) ;
  • Castro, Hugo G. (Instituto de Modelado e Innovacion Tecnologica, Consejo Nacional de Investigaciones Cientificas y Tecnicas (CONICET), Universidad Nacional del Nordeste)
  • Received : 2017.04.21
  • Accepted : 2018.08.01
  • Published : 2018.12.25

Abstract

The concentration fields in the proximities of a local gas emission source are experimentally analyzed in several combinations of wind incidences and source emissions. These conditions are determined by the plume buoyancy, emission velocity and incident flow wind speed. Concentration measurements are performed by an aspirating probe in a boundary layer wind tunnel. The analysis included the mean concentration values and the intensity of concentration fluctuations in a neutral atmospheric boundary layer flow. Different configurations are tested: an isolated stack in a homogeneous terrain and a stack with a bluff body in close proximity, located windward and leeward from the emission source. The experimental mean concentration values are contrasted with Gaussian profiles and the dilution factor is analyzed with respect to the empirical curves of the minimum dilution. Finally, a study on the plume intermittency is performed in a cross-sectional plane near the emission source. It is possible to highlight the following observations: a) plume vertical asymmetry in the case of an isolated emission source, b) significant differences in the dispersion process related to the relative location of the emission source and bluff body effects, and c) different probabilistic behavior of the concentration fluctuation data in a cross-sectional measurement plane inside the plume.

Keywords

Acknowledgement

Supported by : Universidad Tecnologica Nacional Facultad Regional Resistencia (UTN-FRRe), Agencia Nacional de Promocion Cientifica y Tecnologica (ANPCyT)

References

  1. Baechlin, W., Theurer, W. and Plate, E.J. (1992), "Dispersion of gases released near the ground in built up areas: Experimental results compared to simple numerical modelling", J. Wind Eng. Ind. Aerod., 44(1-3), 2721-2732. https://doi.org/10.1016/0167-6105(92)90066-J
  2. Blessmann, J. (1982), "The boundary layer wind tunnel of the UFRGS", J. Wind Eng. Ind. Aerod., 10(2) 231-248. https://doi.org/10.1016/0167-6105(82)90066-6
  3. Camano Schettini, E.B. (1996), "Etude experimentale des jets coaxiaux avec differences de densite", These de Docteur, Institut National Polytechnique de Grenoble, France.
  4. Cermak, J.E. and Takeda, K. (1985), "Physical modeling of urban air-pollutant transport", J. Wind Eng. Ind. Aerod., 21, 51-67. https://doi.org/10.1016/0167-6105(85)90033-9
  5. Cheung, J.C.K. and Melbourne, W.H. (2000), "Probability distribution of dispersion from a model plume in turbulent wind", J. Wind Eng. Ind. Aerod., 87(2-3), 271-285. https://doi.org/10.1016/S0167-6105(00)00043-X
  6. Chui, E. and Wilson, D. (1988), "Effect of varing wind direction on exhaust gas dilution", J. Wind Eng. Ind. Aerod., 31(1), 87-104. https://doi.org/10.1016/0167-6105(88)90189-4
  7. Csanady, G.T. (1973), Turbulent Diffusion in the Environment, D. Reidel Publishing Co., Dordrecht, Holland, 222-248.
  8. Fothergill, C.E., Roberts, P.T. and Packwood, A.R. (2002), "Flow and dispersion around storage tanks. A comparison between numerical and wind tunnel simulations", Wind Struct., 5(2-4), 89-100. https://doi.org/10.12989/was.2002.5.2_3_4.089
  9. Gousseau, P., Blocken, B. and van Heijst, G.J.F. (2012), "Large-Eddy Simulation of pollutant dispersion around a cubical building: Analysis of the turbulent mass transport mechanism by unsteady concentration and velocity statistics", Environ. Pollution, 167, 47-57. https://doi.org/10.1016/j.envpol.2012.03.021
  10. Gousseau, P., Blocken, B., Stathopoulos, T. and van Heijst, G.J.F. (2011), "CFD simulation of near-field pollutant dispersion on a high-resolution grid: A case study by LES and RANS for a building group in downtown Montreal", Atmos. Environ., 45(2), 428-438. https://doi.org/10.1016/j.atmosenv.2010.09.065
  11. Hanna, S.R. (1984), "The exponential probability density function and concentration fluctuations in smoke plumes", Bound.-Lay. Meteorol., 29(4), 361-375. https://doi.org/10.1007/BF00120535
  12. Harion, J.L., Favre-Marinet, M. and Camano, B. (1996), "An improved method for measuring velocity and concentration by thermo-anemometry in turbulent helium-air mixtures", Exp. Fluids, 22(2).
  13. Isyumov, N. and Tanaka, H. (1980), "Wind tunnel modelling of stack gas dispersion - difficulties and approximations", Proceedings of the 5th International Conference on Wind Engineering, Fort Collins, Colorado, USA.
  14. Kim, J.J., Song, H.J. and Baik, J.J. (2006), "Modeling flow and scalar dispersion around Cheomseongdae", Wind Struct., 9(4), 315-330. https://doi.org/10.12989/was.2006.9.4.315
  15. Lateb, M., Masson, C., Stathopoulos, T. and Bedard, C. (2011), "Effect of stack height and exhaust velocity on pollutant dispersion in the wake of a building", Atmos. Environ., 45(29), 5150-5163. https://doi.org/10.1016/j.atmosenv.2011.06.040
  16. Lewellen, W.S. and Sykes, R.I. (1986), "Analysis of concentration fluctuations from lidar observations of atmospheric plumes", J. Climate Appl. Meteorol., 25(8), 1145-1154. https://doi.org/10.1175/1520-0450(1986)025<1145:AOCFFL>2.0.CO;2
  17. Liu, G., Xuan, J. and Park, S.U. (2003), "A new method to calculate wind profile parameters of the wind tunnel boundary layer", J. Wind Eng. Ind. Aerod., 91(9), 1155-1162. https://doi.org/10.1016/S0167-6105(03)00057-6
  18. Loredo-Souza, A.M., Camano Schettini, E.B. and Paluch, M.J. (2004), "Simulacao da camada limite atmosferica em tunel de vento", in Turbulencia, Vol. 4, edited by Moller, S.V., and Silvestrini, J., Associacao Brasileira de Engenharia e Ciencias Mecanicas, ABCM, Brazil.
  19. Mylne, K.R. and Mason, P.J. (1991), "Concentration fluctuation measurements in a dispersing plume at a range of up to 1000 m", Q. J. Roy. Meteor. Soc., 117(497), 177-206. https://doi.org/10.1002/qj.49711749709
  20. Nakayama, H. and Nagai, H. (2011), "Development of local-Scale high-resolution atmospheric dispersion model using large-eddy simulation part 2: Turbulent flow and plume dispersion around a cubical building", J. Nuclear Sci. Technol., 48(3), 374-383. https://doi.org/10.3327/jnst.48.374
  21. Perry, S.G., Heist, D.K., Brouwer, L.H., Monbureau, E.M. and Brixey, L.A. (2016), "Characterization of pollutant dispersion near elongated buildings based on wind tunnel simulations", Atmos. Res., 142, 286-295.
  22. Quinn, A.D., Wilson, M., Reynolds, A.M., Couling, S.B. and Hoxey, R.P. (2001), "Modelling the dispersion of a tracer gas in the wake of an isolated low-rise building", Wind Struct., 4(1), 31-44. https://doi.org/10.12989/was.2001.4.1.031
  23. Robins, A. (2003), "Wind tunnel dispersion modeling some recent and not so recent achievements", J. Wind Eng. Ind. Aerod., 91, 1777-1790. https://doi.org/10.1016/j.jweia.2003.09.025
  24. Robins, A., Castro, I., Hayden, P., Steggel, N., Contini, D. and Heist, D. (2001), "A wind tunnel study of dense gas dispersion in a neutral boundary layer over a rough surface", Atmos. Environ., 35(13), 2243-2252. https://doi.org/10.1016/S1352-2310(01)00072-3
  25. Saathoff, P., Stathopoulos, T. and Wu, H. (1998), "The influence of freestream turbulence on nearfield dilution of exhaust from building vents", J. Wind Eng. Ind. Aerod., 77-78, 741-752. https://doi.org/10.1016/S0167-6105(98)00188-3
  26. Thompson, R.S. (1993), "Building amplification factors for sources near buildings: A wind-tunnel study", Atmos. Environ., 27 15, 2313-2325. https://doi.org/10.1016/0960-1686(93)90400-S
  27. Vervecken, L., Camps, J. and Meyers, J. (2013), "Accounting for wind-direction fluctuations in Reynolds-averaged simulation of near-range atmospheric dispersion", Atmos. Environ., 72, 142-150. https://doi.org/10.1016/j.atmosenv.2013.03.005
  28. White, B.R. and Stein, W. (1990), "Wind-Tunnel studies of variable stack heights for a low-profile building", J. Wind Eng. Ind. Aerod., 36(1), 675-687. https://doi.org/10.1016/0167-6105(90)90410-E
  29. Wilson, D.J., Robins, A.G. and Fackrell, J.E. (1985), "Intermittency and conditionally-averaged concentration fluctuation statistics in plumes", Atmos. Environ., 19(7), 1053-1064. https://doi.org/10.1016/0004-6981(85)90189-1
  30. Yassin, M.F., Katob, S., Ookab, R., Takahashib, T. and Kounob, R. (2005), "Field and wind-tunnel study of pollutant dispersion in a built-up area under various meteorological conditions", J. Wind Eng. Ind. Aerod., 93, 361-382. https://doi.org/10.1016/j.jweia.2005.02.005
  31. Yu, H. and The, J. (2016), "Validation and optimization of SST k-! turbulence model for pollutant dispersion within a building array", Atmos. Environ., 145, 225-238. https://doi.org/10.1016/j.atmosenv.2016.09.043
  32. Zannetti, P. (1990), Air Pollution Modeling - Theories, Computational Methods and Available Software, Springer US.