• Title/Summary/Keyword: boundary characteristics

Search Result 3,207, Processing Time 0.036 seconds

Acoustic Analysis of Axial Fan using BEM based on Kirchhoff Surface (Kirchhoff Surface를 이용한 Fan 소음 해석)

  • Park Y.-M.;Lee S.
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.763-766
    • /
    • 2002
  • A BEM is highly efficient method in the sense of economic computation. However, boundary integration is not easy for the complex and moving surface e.g. in a rotating blade. Thus, Kirchhoff surface is designed in an effort to overcome the difficulty resulting from complex boundary conditions. A Kirchhoff surface is a fictitious surface which envelopes acoustic sources of main concern. Acoustic sources may be distributed on each Kirchhoff surface element depending on its acoustic characteristics. In this study, an axial fan is assumed to have loading noise as a dominant source. Dipole sources can be computed based on the FW-H equation. Acoustic field is then computed by changing Kirchhoff surface on which near-field is implemented, to analyze the effect of Kirchhoff surface on it.

  • PDF

Numerical Simulation of Flows Past Two Spheres (I) -Two Spheres Aligned in the Streamwise Direction- (2개의 구를 지나는 유동에 대한 수치 해석적 연구 (I) -유동방향으로 놓여진 2개의 구-)

  • Yoon Dong-Hyeog;Yang Kyung-Soo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.2 s.233
    • /
    • pp.247-254
    • /
    • 2005
  • A parametric study on the interactions of two spheres aligned in the streamwise direction is carried out using an immersed boundary method. The numerical results for the case of single sphere for the range of $Rs{\le}300$ are in good agreement with other authors' experimental and numerical results currently available. Then, our main investigation is focused on identifying the change of the vortical structures in the presence of a nearby sphere aligned in the streamwise direction for the range $Re{\le}300$. It turns out that significant changes in physical characteristics are noticed depending on how close the two spheres are. In this paper, not only quantitative changes in the key physical parameters such as the force coefficients, but also qualitative changes in vortex structures are reported and analyzed.

Characteristics of the plume formed by the buoyant discharges from the river

  • Kim, Ki-Cheol;Kim, Sung-Bo
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.38 no.8
    • /
    • pp.981-994
    • /
    • 2014
  • Density currents formed by buoyancy discharges from rivers are numerically studied using non-dimensional two layer model including Coriolis acceleration, bottom stress, interfacial friction. Some typical numbers such as Froude number, densimetric Froude number and Kelvin number are obtained and some characteristic scales are defined as a result of non-dimensionalization of the governing equations. Besides the Coriolis effect, the configurations of bottom topography, bottom friction coefficient and interfacial friction are found to significantly affect the propagation of the warm water plume. Frontal position can fastly propagate in the case of large density difference between the two layers and small interfacial friction. Left side boundary current is easily formed under the small interfacial friction. With large Kelvin number, both right and left side boundary currents are formed. Wave-like disturbances and eddies are easily formed under the high Froude number.

Study on the two-dimensional Formation Control of Free Surface of Magnetic Fluid by Electromagnetic Force (전자기력에 의한 자성유체의 2차원 자유표면 형상 제어에 관한 연구)

  • 안창호;지병걸;이은준;박명관
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.979-982
    • /
    • 2003
  • In this study, because of change in electromagnetic force, deformation of the free surface motion of a magnetic fluid is changed. Deformation of the free surface motion of a magnetic fluid for the change in electromagnetic force is discussed and carried out theoretically and experimentally on the basis of Rosensweig Ferrohydrodynamic Bernoulli Equation. Objective of this study explicates free surface motion by electromagnetic force and planes to designed controller. To control free surface of magnetic fluid, it embody designed two-dimensional free surface form of magnetic fluid. By using this characteristics, they applied to oscillator for surface control, flow control, boundary layer control. Strength of magnetic field and height of free surface of magnetic fluid measure as a hall-effect sensor. As performing height control of magnetic fluid, the result will be presented possibility of free surface deformation control.

  • PDF

Fatigue Life Prediction of FRP Composites under Uniaxial Tension and Pure Torsion Loadings (인장-비틀림 하중에 의한 섬유강화 복합재료의 피로수명 예측)

  • 박성완;이장규
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2003.04a
    • /
    • pp.352-361
    • /
    • 2003
  • A fatigue damage accumulation model based on the continuum damage mechanics theory was develope(1 where modules decay ratios in tension and shear on used as indicators for damage variables D . In the model, the damage variables are considered to be second-order tensors. Then the maximum principal damage variable, $D^*$ is introduced According to the similarity to the Principal stress, $D^*$ is obtained as the maximum eigen value of damage tensor [D']. Under proportional tension and torsion loadings, fatigue lives were satisfactorily predicted at any combined stress ratios using the present model in which the fatigue characteristics only under uniaxial tension and pure torsion loadings on needed. Fatigue life prediction under uniaxial tension and pure torsion loadings, was performed based on the damage mechanics using boundary element method.

  • PDF

Fatigue Life Prediction of FRP Composites under Uniaxial Tension and Pure Torsion Loadings (인장-비틀림 하중에 의한 섬유강화 복합재료의 피로수명 예측)

  • Park Sung-Oan
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.13 no.6
    • /
    • pp.64-73
    • /
    • 2004
  • A fatigue damage accumulation model based on the continuum damage mechanics theory was developed where modulus decay ratios in tension and shear were used as indicators for damage variables D. In the model, the damage variables are considered to be second-order tensors. Then, the maximum principal damage variable, $D^*$ is introduced. According to the similarity to the principal stress, $D^*$ is obtained as the maximum eigen value of damage tensor [D]. Under proportional tension and torsion loadings, fatigue lives were satisfactorily predicted at any combined stress ratios using the present model in which the Fatigue characteristics only under uniaxial tension and pure torsion loadings were needed. Fatigue life prediction under uniaxial tension and pure torsion loadings, was performed based on the damage mechanics using boundary element method.

Vibration Characteristics of the Axially Moving Continuum with Time-Varying Length: Spagetti Problem (축방향으로 이동하며 길이가 변하는 연속체의 진동특성: 스파게티 문제에 응용)

  • 사재천;이승엽;이민형
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.05a
    • /
    • pp.385-392
    • /
    • 2001
  • Time-dependent frequency and energy of free vibration of the Spagetti problem, that is the axially moving continuum with time-varying length, are investigated. Exact expressions for the natural frequency and time-varying vibration energy are derived by dealing with traveling waves. When the string length is increased, the vibration period increases, but the free vibration energy varies as a function of both translating velocity and boundary velocity of the continuum. However, when the string undergoes retraction, the vibration energy increases with time, String tension together with non-zero instantaneous velocity at the moving boundary results in energy variation.

  • PDF

The Stability of Composite Pipes Conveying Fluid (유체유동에 의한 복합재료 파이프의 안정성 연구)

  • 최재운;송오섭
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.05a
    • /
    • pp.904-910
    • /
    • 2001
  • Static and oscillatory loss of stability of composite pipes conveying fluid is investigated. The theory of thin walled beams is applied and transverse shear, rotary inertia, primary and secondary warping effects are incorporated. The governing equations and the associated boundary conditions are derived through Hamilton's variational principle. The governing equations and the associated boundary conditions are transferred to eigenvalues problem which provides the information about the dynamic characteristics of the system. Numerical analysis is performed by using extended Gelerkin method. Critical velocity of fluid is investigated by increasing fiber angle and mass ratio of fluid to pipe including fluid.

  • PDF

Determination of Urban Surface Aerodynamic Characteristics Using Marquardt Method

  • Zhang, Ning;Jiang, Weimei;Gao, Zhiqiu;Hu, Fei;Peng, Zhen
    • Wind and Structures
    • /
    • v.12 no.3
    • /
    • pp.281-283
    • /
    • 2009
  • Marquardt method is used to estimate the aerodynamic parameters in urban area of Beijing City, China, including displacement length (d), roughness length ($z_0$) and friction velocity (u*) and drag coefficient. The surface drag coefficient defined as the ratio between friction velocity and mean wind speed is 0.125 in our research, which is close to typical urban area value. The averaged d and $z_0$ are 1.2 m and 7.6 m. d and $z_0$ change with direction because of the surface heterogeneity over urban surface and reach their maximum values at S-SW sector, this tendency agrees with the surface rough element distribution around the observation tower.