• Title/Summary/Keyword: boundary characteristics

Search Result 3,206, Processing Time 0.032 seconds

Analysis of Flow Characteristics in Upstream Channel depending on Water Gate Operation of Nakdan Multi Functional Weir (수문운영에 따른 낙단보 상류하도 흐름특성 해석)

  • Moon, Sang-Chul;Park, Ki Bum;Ahn, Seung-Seop
    • Journal of Environmental Science International
    • /
    • v.25 no.4
    • /
    • pp.491-504
    • /
    • 2016
  • This study, examines the flow characteristics of upstream channel depending on water gate operation of Nakdan Multi-fuctional weir. The specific purpose of this study are to simulate the variation of flow velocity depending on the operation of the weir using 1-dimensional hydraulic model, HEC-RAS, and compare it with observed velocity. For discharge conditions from $50m^3/s$ to $3,500m^3/s$, it is observed that the velocity of upstream channel is almost constant, whereas for probability flood discharge, the velocity and froude number are increased as the discharge values are increased. The velocity values for downstream boundary condition EL, 40.0 m are more decreased than those for EL. 40.5m. From comparison on the variation of water stage depending on water gate operation, it is observed that the stage values are almost constant for discharges below $300m^3/s$, whereas 5 cm to 20 cm for discharges over $700m^3/s$. Flow velocity at streamflow gauging station. Nakdong, is decreased by more than 875% after installing the weir. The results obtained from this study indicate that the velocity of upstream channel is decreased and the discharge and velocity of downstream channel are significantly varied after installing the weir.

Geotechnical Characteristics of Cut Slope in Tertiary Jungja Bain, Ulsan area (울산지역 제3기 정자분지의 도로사면 지반특성)

  • Kim, Seung-Hyun;Koo, Ho-Bon;Lee, Jung-Yup;Rhee, Jong-Hyun;Park, Sung-Kyu;Kim, Kwan-Young
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.107-112
    • /
    • 2005
  • Road is built continuously along with development of industry and cut slope is happened necessarily in road construction. Geoengineers are executing cut slope stability analysis considering various cut slope condition such as topography, geology, hydraulic condition and so on. The Tertiary Jungja Basin is located in the southeastern coastal area of the Korea Peninsula. Jungja Basin area is created by geotectonic movement of the plate after Early Miocene epoch. The northwestern and southwestern boundary of the basin is fault zone. The Basement rock is hornfels (Ulsan Formation). Basin-fills consist of extrusive volcanic rock(Tangsa Andesites), unconsolidated fluviatile conglomerate(Kangdong Formation) and shallow brackish-water sandstone(Sinhyun Formation). The characteristics of cut slopes in this area is different with cut slopes in the other site. Soil layers in this area is unconsolidated sediments and is not formed the weathering and erosion of the rock. So, the depth of soil layer is very thick. Faults of this area are northwest-southeast and northeast-southwest direction. Expandible clay mineral as smectite, chlorite et al. detected from fault gouge using XRD. Therefore, Jungja Basin area must consider the characteristics of the faults and soil layers thickness necessarily cut slopes stability analysis.

  • PDF

Sintering Characteristics of ZnO Fabricated by Spark Plasma Sintering Process for High Temperature Thermoelectric Materials Application (고온용 ZnO계 열전 재료의 방전플라즈마 소결 특성 및 미세구조)

  • 심광보;김경훈;홍영호;채재홍
    • Journal of the Korean Ceramic Society
    • /
    • v.40 no.6
    • /
    • pp.560-565
    • /
    • 2003
  • M-doped (M=Al, Ni) ZnO thermoelectric materials were fully densified at low temperatures of 800∼1,000$^{\circ}C$ and their sintering characteristics and microstructural features were investigated. Electron microscopic analysis showed that the addition of NiO promoted tile formation of solid solution and caused actively grain growth. The addition of A1$_2$O$_3$ prevented the evaporation of pure ZnO at grain boundaries and suppressed the grain growth by the formation of secondary phase. In case of the addition of A1$_2$O$_3$ together with NiO, the specimen showed an excellent microstructure and also the SEM-EBSP (Electron Back-scattered Diffraction Pattern) analysis confirmed that it shows a superior grain boundary distribution to the others specimens. These microstructural characteristics induced by the addition of A1$_2$O$_3$ together with NiO may increase the electrical conductivity by the increase in carrier concentration and decrease the thermal conductivity by the phonon scattering effect and, consequently, improve the thermoelectric property.

Analysis of a.c. Characteristics in ZnO-Bi2O3Cr2O3 Varistor using Dielectric Functions (유전함수를 이용한 ZnO-Bi2O3Cr2O3 바리스터의 a.c. 특성 분석)

  • Hong, Youn-Woo;Shin, Hyo-Soon;Yeo, Dong-Hun;Kim, Jin-Ho
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.23 no.5
    • /
    • pp.368-373
    • /
    • 2010
  • In this study, we have investigated the effects of Cr dopant on the bulk trap levels and grain boundary characteristics of $Bi_2O_3$-based ZnO (ZB) varistor using admittance spectroscopy and dielectric functions (such as $Z^*,\;Y^*,\;M^*,\;{\varepsilon}^*$, and $tan{\delta}$). Admittance spectra show more than two bulk traps of $Zn_i$ and $V_o$ probably in different ionization states in ZnO-$Bi_2O_3-Cr_2O_3$ (ZBCr) system. Three kinds of temperature-dependant activation energies ($E_{bt}'s$) were calculated as 0.11~0.14 eV of attractive coulombic center, 0.16~0.17 eV of $Zn_{\ddot{i}}$, and 0.33 eV of $V_o^{\cdot}$ as dominant bulk defects. The grain boundaries of ZBCr could be electrochemically divided into two types as a sensitive to ambient oxygen i.e. electrically active one and an oxygen-insensitive i.e. electrically inactive one. The grain boundaries were electrically single type under 460 K (equivalent circuit as parallel $R_{gb1}C_{gb1}$) but separated as double one ($R_{gb1}C_{gb1}-R_{gb2}C_{gb2}$) over 480 K. It is revealed that the dielectric functions are very useful tool to separate the overlapped bulk defect levels and to characterize the electrical properties of grain boundaries.

Effects of Number of Sides on Aerodynamic Characteristics of Super-Tall Buildings (단면의 변의 수가 초고층 건물의 공력특성에 미치는 영향)

  • Kim, Yong-Chul;Bandi, Eswara Kumar;Tamura, Yukio;Yoshida, Akihito;Yoon, Sung-Won
    • Journal of Korean Association for Spatial Structures
    • /
    • v.13 no.3
    • /
    • pp.83-90
    • /
    • 2013
  • A series of wind tunnel tests were conducted on 7 super-tall buildings with various polygon cross-sections, including triangle, square, pentagon, hexagon, octagon, dodecagon, and circular. The primary purpose of the present study is to investigate the effect of increasing number of sides on aerodynamic characteristics for super-tall buildings. Wind tunnel tests were conducted under the turbulent boundary layers whose power-law exponent is 0.27. Fluctuating wind pressures from more than 200 pressure taps were recorded simultaneously, and time series of overturning moments were calculated considering tributary area of each pressure tap. The results show that the overturning moment coefficients and the spectral values decrease with increasing number of sides, and the largest mean and fluctuating overturning moments were found for the triangular super-tall building, and the largest spectral values were found for the square super-tall building. The analysis should be conducted more in detail, but currently it can be roughly said that there seems to be a little differences in the aerodynamic characteristics for the super-tall buildings whose number of sides is larger than 5 or 6.

Starting Characteristics Study of Scramjet Engine Test Facility(SETF) (스크램제트 엔진 시험설비의 시동특성 연구)

  • Lee, Yang-Ji;Kang, Sang-Hun;Oh, Joong-Hwan;Yang, Soo-Seok
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.15 no.2
    • /
    • pp.15-22
    • /
    • 2011
  • Unlike most aerodynamic wind-tunnel, Scramjet Engine Test Facility(SETF) of Korea Aerospace Research Institute should simulate enthalpy condition at a flight condition. SETF is a blow-down type, high-enthalpy wind tunnel. To attain a flight condition, a highly stagnated air comes into the test cell through a supersonic nozzle. Also, an air ejector of the SETF is used for simulating altitude conditions of the engine, and facility starting. SETF has a free-jet type test cell and this free-jet type test cell can simulate a boundary layer effect between an airplane and engine using facility nozzle, but it is too difficult to predict the nature of the facility. Therefore it is required to understand the starting characteristics of the facility by experiments. In this paper, the starting characteristics of the SETF and modifications of the ejector are described.

A summertime near-ground velocity profile of the Bora wind

  • Lepri, Petra;Kozmar, Hrvoje;Vecenaj, Zeljko;Grisogono, Branko
    • Wind and Structures
    • /
    • v.19 no.5
    • /
    • pp.505-522
    • /
    • 2014
  • While effects of the atmospheric boundary layer flow on engineering infrastructure are more or less known, some local transient winds create difficulties for structures, traffic and human activities. Hence, further research is required to fully elucidate flow characteristics of some of those very unique local winds. In this study, important characteristics of observed vertical velocity profiles along the main wind direction for the gusty Bora wind blowing along the eastern Adriatic coast are presented. Commonly used empirical power-law and the logarithmic-law profiles are compared against unique 3-level high-frequency Bora measurements. The experimental data agree well with the power-law and logarithmic-law approximations. An interesting feature observed is a decrease in the power-law exponent and aerodynamic surface roughness length, and an increase in friction velocity with increasing Bora wind velocity. This indicates an urban-like velocity profile for smaller wind velocities and rural-like velocity profile for larger wind velocities, which is due to a stronger increase in absolute velocity at each of the heights observed as compared to the respective velocity gradient (difference in average velocity among two different heights). The trends observed are similar during both the day and night. The thermal stratification is near neutral due to a strong mechanical mixing. The differences in aerodynamic surface roughness length are negligible for different time averaging periods when using the median. For the friction velocity, the arithmetic mean proved to be independent of the time record length, while for the power-law exponent both the arithmetic mean and the median are not influenced by the time averaging period. Another issue is a large difference in aerodynamic surface roughness length when calculating using the arithmetic mean and the median. This indicates that the more robust median is a more suitable parameter to determine the aerodynamic surface roughness length than the arithmetic mean value. Variations in velocity profiles at the same site during different wind periods are interesting because, in the engineering community, it has been commonly accepted that the aerodynamic characteristics at a particular site remain the same during various wind regimes.

Textural Characteristics and Transport Mode of Surface Sediments of a Tidal Sand Ridge in Gyeonggi Bay, Korea (경기만 조류성 사퇴 표층 퇴적물의 입도 특성 및 이동 양상)

  • CHOI, JIN-HYUK;PARK, YONG AHN
    • 한국해양학회지
    • /
    • v.27 no.2
    • /
    • pp.145-153
    • /
    • 1992
  • From the analyses of 16 bottom sediment samples and current data obtained during field expert ments from August to September 1987, the textural characteristics and transport mode of sand grains of a tidal sand ridge in Gyeonggi Bay are studied. The textural characteristic of the bottom sediments are diverse depending on their location on the tidal sand ridge. Sands on the crest are well sorted. near symmetric in skewness. leptokurtic in kurtosis. and are unimodal in peakedness. On the other hand, Poorly sorted gravelly sands in the trough are coarse skewed in skewness and plartkurtic in kurtosis. The mean values of U/SUB 100/ (velocity at one meter above bottom) and U/SUP */ (boundary shear velocity) are calculated to be 41.4 cm/sec and 2.39 cm/sec, respectively. From the analyses of characteristics of the sediments and currents in the study area, it can be concluded that almost all the sands of the tidal sand ridge (esp. on the crest) are transported as bedload (mainly as saltation).

  • PDF

A Study on the Structural Shape and Vibrational Characteristics of Aluminum Sandwich Panel (알루미늄 샌드위치 패널의 구조적 형상 및 진동 특성에 관한 연구)

  • Bae, Dong-Myung;Son, Jung-Dae
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.40 no.4
    • /
    • pp.351-359
    • /
    • 2004
  • Aluminum honeycomb sandwich panel (AHSP) not only have high flexural rigidity and strength per density but also excellence in anti-vibration and anti-noise properties. Their properties are very useful for build airplane and high speed crafts, which need lighter-weighted and more strengthed element. Recently, the AHSP is regarded as a promising strength member of light structures like the hull of high speed crafts. Generally, the core shape of aluminum sandwich panel (ASP) is the hexagonal shape of honeycomb. But, in this paper, authors proposed the ASP with pyramid core, as the ASP model of new type, and analysed the structural and vibrational characteristics for aluminum pyramid sandwich panel (APSP) as this new ASP type, according to the thickness variation of core and face, the height variation of core. The applied sandwich models have isotropic and symmetrical aluminum faces and pyramid cores. And, the applied boundary conditions are simple, fixed and free support.

A rock physical approach to understand geo-mechanics of cracked porous media having three fluid phases

  • Ahmad, Qazi Adnan;Wu, Guochen;Zong, Zhaoyun;Wu, Jianlu;Ehsan, Muhammad Irfan;Du, Zeyuan
    • Geomechanics and Engineering
    • /
    • v.23 no.4
    • /
    • pp.327-338
    • /
    • 2020
  • The role of precise prediction of subsurface fluids and discrimination among them cannot be ignored in reservoir characterization and petroleum prospecting. A suitable rock physics model should be build for the extraction of valuable information form seismic data. The main intent of current work is to present a rock physics model to analyze the characteristics of seismic wave propagating through a cracked porous rock saturated by a three phase fluid. Furthermore, the influence on wave characteristics due to variation in saturation of water, oil and gas were also analyzed for oil and water as wet cases. With this approach the objective to explore wave attenuation and dispersion due to wave induce fluid flow (WIFF) at seismic and sub-seismic frequencies can be precisely achieved. We accomplished our proposed approach by using BISQ equations and by applying appropriate boundary conditions to incorporate heterogeneity due to saturation of three immiscible fluids forming a layered system. To authenticate the proposed methodology, we compared our results with White's mesoscopic theory and with the results obtained by using Biot's poroelastic relations. The outcomes reveals that, at low frequencies seismic wave characteristics are in good agreement with White's mesoscopic theory, however a slight increase in attenuation at seismic frequencies is because of the squirt flow. Moreover, our work crop up as a practical tool for the development of rock physical theories with the intention to identify and estimate properties of different fluids from seismic data.