• Title/Summary/Keyword: bottom water

Search Result 2,178, Processing Time 0.025 seconds

Variations of Water Quality after Construction of Keum River Estuary Barrage (금강하구둑 건설후의 수질변화)

  • KIM Jong-Gu;YOU Sun-Jae;KWON Jung-No
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.31 no.5
    • /
    • pp.685-694
    • /
    • 1998
  • To evaluate the water quality characteristic after construction of Keum river estuary barrage, water quality analysis were conducted on August October in 1995 and January, May in 1996 respectively. The results were summarized as follows. The concentrations of COD were in the range of 1.01~5.10 (mean 2.50)mg/$\ell$ for surface water and 0.51$\~$6.68 (1.88)mg/$\ell$ for bottom water. The concentrations of dissolved inorganic nitrogen (DIN) were in the range of 1.26$\~$105.91 (29.66)$\mu$g-at/$\ell$ for surface water and 1.42$\~$68.38 (19.12)$\mu$g-at/$\ell$ for bottom water. The concentrations of phosphate phosphorus were in the range of ND$\~$0.99 (0.34)$\mu$g-at/$\ell$ for surface water and 0.17$\~$1.04 (0.49)$\mu$g-at/$\ell$ for bottom water. The nitrogen ratio to the phosphorus were as high as 3.5$\~$849.5 (146.5). Therefore, Phosphate phosphorus was playing an important role in phytoplankton growth as limiting factor in Keum river estuary. The correlation coefficient of salinity and DIN according to COD was shown to -0.757 and -0.874 respectivity. Mean values of eutrophicaton indies were calculated to 9.7, 7.2 for surface and bottom water, these values were exceeding 1, the value of eutrophication criteria. Especially station 1$\~$3 were shown over 10 as eutrophication indices. Therefore, Keum river estuary could be evaluate to possibility area for breakout of red tides.

  • PDF

An Experimental Study on the Properties of Concrete using Bottom Ash according to Water-Cement Ratio (물시멘트비에 따른 바텀애시를 사용한 콘크리트의 특성에 관한 실험적 연구)

  • 이종호;김재환;김용로;강석표;최세진;김무한
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2002.05a
    • /
    • pp.57-60
    • /
    • 2002
  • Recently, the coal ash production has been increased by increase of consumption of electric power. So it is important to find a reclaimed place and treatment utility for treating coal ash. Accordingly, in this study we performed an experimental study to compare and analyze the Properties of concrete according to W/C and bottom ash replacement ratio. As a result of this study, it was found that the bleeding content was decreased according to decrease of W/C and increase of bottom ash replacement ratio, and the compressive strength of concrete using bottom ash was similar to plain concrete(replacement ratio 0%).

  • PDF

Simulation of Water Temperature in the Downstream According to Withdrawal Types of Dam using EFDC Model (댐 방류형태가 하류 하천 수온변화에 미치는 영향 예측)

  • Park, Jae-Chung;Yoon, Jin-Hyuk;Jung, Yong-Moon;Son, Ji-Yeon;Song, Young-Il
    • Journal of Environmental Impact Assessment
    • /
    • v.21 no.5
    • /
    • pp.715-724
    • /
    • 2012
  • In this study, we simulated water temperature in the downstream according to withdrawal types of dam using EFDC model. Three scenarios were assumed as water was released from the surface layer, the middle layer, and the bottom layer at intervals of 10m depth. In case of the surface layer withdrawal, the water temperature rose from March and lowered gradually after it reached a peak in August. The middle and the bottom layers effluence temperatures were lower than the surface layer temperature by maximum $15.9^{\circ}C$(in July), but after September, temperature inversion appeared. It was advantageous for the surface layer withdrawal to decrease cold damage and fog in downstream area and was possible to the middle and the bottom layers withdrawal from August to September. However, the reliability of model should be improved by accumulating the real-time information of water temperature.

The Experimental Study on Hardening Characteristics of Bottom ash by Alkali Activation (알칼리 활성법에 의한 Bottom Ash의 경화 특성에 관한 실험적 연구)

  • Oh, Dong-Uk;Kim, Baek-Joong;Yi, Chong-Ku;Kang, Kyung-In
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2008.11a
    • /
    • pp.103-106
    • /
    • 2008
  • Because the physical·chemical properties of bottom ash are inferior, most bottom ash is disused. But the use of bottom ash helps in reducing environmental pollution and solving some bottom ash waste problems. So, we have been investigating about the optimum mixture, hardening mechanism, curing condition and environmental safety of a paste composed of a bottom ash and alkali. optimal mixing proportion of bottom ash solid was cement 5%, water 30%, NaOH 10%. After curing during 28days, bottom ash solid can be achieved compressive strength 15.13MPa. As a result, Compressive strength tests of alkali-activated bottom ash have potential as a replacement of coarse aggregate.

  • PDF

Water Quality Characteristics Along Mid-western Coastal Area of Korea (한국 서해 중부 연안역의 수질환경 특성)

  • Lim, Dhong-Il;Kang, Mi-Ran;Jang, Pung-Guk;Kim, So-Young;Jung, Hoi-Soo;Kang, Yang-Soon;Kang, Young-Shil
    • Ocean and Polar Research
    • /
    • v.30 no.4
    • /
    • pp.379-399
    • /
    • 2008
  • Spatial-temporal variations in physiochemical water qualities (temperature, salinity, DO, SPM, POC and nutrients) of surface and bottom waters were investigated along the mid-western coastal area (Taean Peninsula to Gomso Bay) of Korea. Spatial distribution patterns of temperature and salinity were mostly controlled by the physical mixing process of freshwater from Geum River and/or Gyunggi Bay with nearby coastal water. A strong tidal front is formed off Taean Peninsula during spring and summer. Seasonal variations in nutrient concentrations, lower in spring and summer and higher in fall and winter, are primarily regulated by magnitude of phytoplankton occurrence rather than freshwater loadings into the bay. Based on seasonal and spatial variability of physicochemical parameters, water quality of the study area can be divided into four water masses; Gyunggi Bay-influenced Water Mass (GBWM), Geum River-influenced Water Mass (GRWM), Yellow Sea Bottom Cold Water Mass (YSBCWM) and Cheonsu Bay Water Mass (CBWM). Water quality of the GBWM (Taean Peninsula coastal area), which has relatively low salinity and high concentrations of nutrients, is strongly controlled by the Gyunggi Bay coastal water, which is under influence of the Han River freshwater. In this water mass, the mixed layer is always developed by strong tidal mixing. As a result, a tidal front is formed along the offshore boundary of the mixed layer. Such tidal fronts probably play an important role in the distribution of phytoplankton communities, SPM and nutrients. The GRWM, with low salinity and high nutrients, especially during the flood summer season, is closely related to physiochemical properties of the Geum River. During the flood season, nutrient-enriched Geum River water mass extends up to 60 km away from the river mouth, potentially causing serious environmental problems such as eutrophication and unusual and/or noxious algal blooms. Offshore (<$30{\sim}40m$ in water depth) of the study area, YSBCWM coupled with a strong thermocline can be identified in spring-summer periods, exhibiting abundant nutrients in association with low temperature and limited biological activity. During spring and summer, a tidal front is formed in a transition zone between the coastal water mass and bottom cold water mass in the Yellow Sea, resulting in intensified upwelling and thereby supplying abundant nutrients to the GBWM and GRWM. Such cold bottom water mass and tidal front formation seems to play an important role in controlling water quality and further regulating physical ecosystem processes along mid-western Korean coastal area.

On the Bottom Water in the Western Channel In the Korea Strait-1 - the inflow path of the bottom cold water - (대한해협 서수도의 저층수에 대한 연구-1 - 저층 냉수의 유입 경로 -)

  • YUN Jong-Hooi;KANG Shin-Hyoun;CHO Kyu-Dae;MOON Chang-Ho
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.25 no.1
    • /
    • pp.1-14
    • /
    • 1992
  • With 16 years' oceanographic data(1973-1988) of the National Fisheries Research and Development Agency and the CTD data collected by a training ship of Korea Maritime University during Nov. 6-11, 1989, the inflow path of the bottom cold water in the western channel of the Korea Strait were investigated. Temperature of the bottom water in the western channel shows the lowest in summer and large annual variation. According to the temperature distributions in the years when the bottom cold water exists in the western channel in summer, the cold water in the southwestern region of the East Sea seems to intrude into the western channel through the sea southeast 10- 15 miles off Ulsan with its properties showing slight change during advection.

  • PDF

Physical Properties of Lightweight Materials According to the Replacement Ratios of the Admixture (혼합재 치환율에 따른 경량소재의 물리적 특성)

  • Jung, Yon-Jo;Chu, Yong-Sik;Lee, Jong-Kyu;Song, Hoon
    • Journal of the Korean Ceramic Society
    • /
    • v.46 no.6
    • /
    • pp.633-638
    • /
    • 2009
  • Lightweight materials were fabricated using glass abrasive sludge, bottom ash and slag powder in this study. This study tried to draw the correlation between physical properties and internal pore of lightweight material. The content of bottom ash and slag powder was from 10% to 50% and firing temperature from $760{^{\circ}C}\;to\;800{^{\circ}C}$ in rotary kiln. The lightweight material containing bottom ash or slag powder had a specific gravity of $0.21{\sim}0.70$ at particle size $2{\sim}4$ mm. Replacement ratio of the admixture increasing with specific gravity increased. Fracture strength of panel made with various lightweight materials was $32{\sim}55\;kgf/cm^2$ and flexural strength was $11{\sim}18\;kgf/cm^2$. Fracture strength increased by 72% and flexural strength was 63% compared with reference. Thermal conductivities of panel was $0.07{\sim}0.11W/m{\cdot}k$. The water absorption ratios of panel with lightweight materials containing bottom ash were $1.8{\sim}2.8$% and slag powder were $2.65{\sim}2.8$%. Excellent results on resistant of water absorption.

Economic Impacts of Agricultural Water Shortages in Korea - A Combined Top-down and Bottom-up Model Analysis - (상·하향 통합모형을 활용한 농업 수자원 부족의 경제적 효과 분석)

  • Lee, Seoung-Ho;Kwon, Oh-Sang;Kang, Sung-Won
    • Journal of Korean Society of Rural Planning
    • /
    • v.23 no.4
    • /
    • pp.111-126
    • /
    • 2017
  • This study analyzes the impacts of agricultural water shortages in Korea using a combined top-down and bottom-up model. A multi-region multi-output agricultural sector model with detailed descriptions of production technologies and water and land resource constraints has been combined with a standard CGE model. The impacts of four different water shortage scenarios were simulated. It is shown that an active adaptation of crop choices occurs in even the regions with relatively abundant water resources in order to respond to the change in relative output prices caused by water shortages. We found that although the losses in production values are not quite large despite water shortages due to the price feedbacks, the loss in GDP is substantial. We show that our combined approach has advantages in deriving region and product specific production effects as well as the overall GDP loss effect of water shortages.

Design and Construction of Bottom Drainage Tunnel and the Watertight Tunnel (배수형 터널과 방수형 터널의 설계와 시공)

  • Kim, Seung-Ryeol;Park, Gwang-Jun;Park, Bong-Gi
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1993.03a
    • /
    • pp.49-58
    • /
    • 1993
  • Reappraisal of the design and the construction concept of the bottom drainage tunnel has been made through the seepage analysis. An appropriate design approach for this tunnel has also been proposed. It was revealed from this study that water pressures acting on the concrete lining in the bottom dralnage tunnel much depend on the permeability of the surrounding ground, the source of water supply and the discharge capacity of dralnage facilities. The full release of these water pressures by the current drainage system could not be expected if this type of tunnel is constructed in the ground including alluvial deposits having a high permeability. The necessity of a proper reinforcement of the concrete lining or a modification of its shapes corresponding to the water pressure has been suggested.

  • PDF

Investigation of Dimension Changes in Under Pressure Hydraulic Sediment Flushing Cavity of Storage Dams Under Effect of Localized Vibrations in Sediment Layers

  • Dodaran, Asgar Ahadpour;Park, Sang-Kil;Mardashti, Asadollah;Noshadi, Masoud
    • International Journal of Ocean System Engineering
    • /
    • v.2 no.2
    • /
    • pp.71-81
    • /
    • 2012
  • Several methods have been proposed to control the sedimentation process. These include catchment management, flushing, sluicing, density current venting, and dredging. Flushing is used to erode previously deposited sediments. In pressurized flushing, the sediment in the vicinity of the outlet openings is scoured and a funnel shaped crater is created. In this study, the effect of localized vibrations in the sediment layers on the dimensions of the flushing cone was investigated experimentally. For this purpose, experiments were carried out with two bottom outlet diameters, five discharge releases for each desired water depth, and one water depth above the center of the bottom outlets. The results indicate that the volume and dimensions of the flushing cone are strongly affected by localized vibrations.