• Title/Summary/Keyword: bottom model

Search Result 1,644, Processing Time 0.028 seconds

A Study on the Bottom-up Long-run Incremental costing Methodology for the Korean Mobile Network (이동통신망 상호접속요금 산정을 위한 장기증분원가모형에 관한 연구)

  • Choe Seon-Mi;Hyeon Chang-Hui
    • Proceedings of the Korea Technology Innovation Society Conference
    • /
    • 2004.05a
    • /
    • pp.25-36
    • /
    • 2004
  • The key objective of this paper is to suggest a pilot model for mobile network interconnection charge calculation by bottom-up long-run incremental costing methodology. Interconnection issues have lately attracted considerable attention by network operators and regulators. However there is no standard by all the network operators' agreement. The costing method is an acute problem because the interconnection charge is directly related to the network operators' revenue. Thus Korea has planned to launch the new interconnection policy based on the current traffic distribution and then we simulate the model in a sample area with virtual data. The results propose objective and reasonable guideline for the mobile network element cost calculation. It can be helpful for calculating price floor or bottom-up long run incremental interconnection charge by regulator.

  • PDF

Characteristics of the plume formed by the buoyant discharges from the river

  • Kim, Ki-Cheol;Kim, Sung-Bo
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.38 no.8
    • /
    • pp.981-994
    • /
    • 2014
  • Density currents formed by buoyancy discharges from rivers are numerically studied using non-dimensional two layer model including Coriolis acceleration, bottom stress, interfacial friction. Some typical numbers such as Froude number, densimetric Froude number and Kelvin number are obtained and some characteristic scales are defined as a result of non-dimensionalization of the governing equations. Besides the Coriolis effect, the configurations of bottom topography, bottom friction coefficient and interfacial friction are found to significantly affect the propagation of the warm water plume. Frontal position can fastly propagate in the case of large density difference between the two layers and small interfacial friction. Left side boundary current is easily formed under the small interfacial friction. With large Kelvin number, both right and left side boundary currents are formed. Wave-like disturbances and eddies are easily formed under the high Froude number.

A Network redesigning methodology for LLU system (가입자선로 세분화를 위한 가입자망 재설계방법)

  • 민대홍
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2001.10a
    • /
    • pp.446-449
    • /
    • 2001
  • A LLU system is developed for efficient use of existing local loop. By this system, new entrant ran use the local loop indifferently comparing with incumbent telecommunications operator. To implement the LLU, bottom-up typed LRIC model by network redesigning was accepted for costing system in Korea. In this paper, local loop redesigning methodology is presented to build a bottom-up typed LRIC model.

  • PDF

Frequency Dependence of High-frequency Bottom Reflection Loss Measurements (고주파 해저면 반사손실의 주파수 종속성 측정)

  • 박순식;윤관섭;최지웅;나정열
    • The Journal of the Acoustical Society of Korea
    • /
    • v.22 no.8
    • /
    • pp.652-659
    • /
    • 2003
  • High-frequency(40∼120 kHz) reflection loss measurements on the water-sandy sediment with a flat interface were conducted in a water tank for various grazing angles. The water tank(5×5×5 m) was filled with a 0.5 m-thick-flat bottom of 0.5ø-mean-grain-size sand. Reflection losses, which were experimentally obtained as a function of grazing angle and frequency, were compared with the forward loss model, APL-UW model (Mourad & Jackson, 1989). For frequencies below 60 kHz, the observed losses well agree with the reflection loss model, however, in cases for frequencies above 70 kHz, the observed losses are greater by 2∼3 dB than the model results. The model calculation, which does not fully account for the vertical scale of roughness due to grain size, produce less bottom losses compared to the observations that correspond to large roughness based on the Rayleigh parameter in the wave scattering theory. In conclusion, for the same grain-size-sediment, as frequencies increase, the grainsize becomes the scale of roughness that could be very large for the frequencies above 70 kHz. Therefore, although the sea bottom was flat, we have to consider the frequency dependence of an effect of roughness within confidential interval of grain size distribution in reflection loss model.

Ecological modeling for estimation of a transport and distribution of COD in Kamak Bay (가막만의 COD 거동 및 분포 특성 평가를 위한 생태계 모델링)

  • Kim Dong-Myung
    • Journal of Environmental Science International
    • /
    • v.14 no.9
    • /
    • pp.835-842
    • /
    • 2005
  • The three-dimensional eco-hydrodynamic model was applied to estimate the physical process in terms of COD (chemical oxygen demand) and net supply(or decomposition) rate of COD in Kamak Bay to find proper management plan for oxygen demanding organic matters. The estimation results of the physical process in terms of COD showed that transportation of COD is dominant in surface level while accumulation of COD is dominant in bottom level. In the case of surface level, the net supply rate of COD was 0 -0.50 mg/m2/day. The net decomposition rate of COD was 0 -0.04 mg/m2/day in middle level(3 -6m) and 0.05 -0.1 5 mg/m2/day in bottom level(6m -bottom). These results indicates that the biological decomposition and physical accumulation of COD are occurred predominantly at the northern part of bottom level. Therefore, it is important to consider both allochthonous and autochthonous oxygen demanding organic matters in the region.

Ecological Modeling for Estimation of Environmental Characteristics in Masan Bay

  • Kim, Dong-Myung
    • Journal of Environmental Science International
    • /
    • v.12 no.8
    • /
    • pp.841-846
    • /
    • 2003
  • The ecosystem model was applied to estimate the regional distribution of the net production(or consumption) of phytoplankton and the net uptake(or regeneration) rate of nutrients in Masan Bay for scenario analysis to find a proper management plan. At the surface level, net production of phytoplankton is 200 mgC/㎡/day at the entrance of the bay, and 400∼1000 mgC/㎡/day at the center of the bay. The inner area of the bay showed more than 2000 mgC/㎡/day. All areas of the bottom level have a net consumption, with the center of the bottom level showing more than 600 mgC/㎡/day. For dissolved inorganic nitrogen, the results showed a net uptake rate of 100∼900 mg/㎡/day at the surface level. It showed that the net regeneration is above 50 mg/㎡/day at the bottom level. For dissolved inorganic phosphorus, the net uptake rate showed 10.0∼80.0 mg/㎡/day at the surface level, and the regeneration rate showed 0∼20.5 mg/㎡/day at the bottom level. Therefore, in order to control the water quality in Masan Bay, it is important to consider the re-supplement of nutrients regenerated in the water column.

Designing method for fire safety of steel box bridge girders

  • Li, Xuyang;Zhang, Gang;Kodur, Venkatesh;He, Shuanhai;Huang, Qiao
    • Steel and Composite Structures
    • /
    • v.38 no.6
    • /
    • pp.657-670
    • /
    • 2021
  • This paper presents a designing method for enhancing fire resistance of steel box bridge girders (closed steel box bridge girder supporting a thin concrete slab) through taking into account such parameters namely; fire severity, type of longitudinal stiffeners (I, L, and T shaped), and number of longitudinal stiffeners. A validated 3-D finite element model, developed through the computer program ANSYS, is utilized to go over the fire response of a typical steel box bridge girder using the transient thermo-structural analysis method. Results from the numerical analysis show that fire severity and type of longitudinal stiffeners welded on bottom flange have significant influence on fire resistance of steel box bridge girders. T shaped longitudinal stiffeners applied on bottom flange can highly prevent collapse of steel box bridge girders towards the end of fire exposure. Increase of longitudinal stiffeners on bottom flange and web can slightly enhance fire resistance of steel box bridge girders. Rate of deflection-based criterion can be reliable to evaluate fire resistance of steel box bridge girders in most fire exposure cases. Thus, T shaped longitudinal stiffeners on bottom flange incorporated into bridge fire-resistance design can significantly enhance fire resistance of steel box bridge girders.

A Confirmatory Model for Sustainability of Apparel Brands and Its Impact on Brand Outcomes

  • Park, Hyejune
    • International Journal of Costume and Fashion
    • /
    • v.16 no.1
    • /
    • pp.55-70
    • /
    • 2016
  • The existing research on sustainability in the apparel industry provides no clear consensus on the definition of sustainability for the apparel brands and how sustainability of apparel brands as it is perceived by consumers can be measured. To fill this gap in research, the present study proposes and tests a confirmatory model of sustainability for apparel brands based on the three pillars of sustainability (i.e., economic, environmental, social sustainability) theorized in the Triple Bottom Line model. A survey of 754 U.S. consumers provided data for empirical testing. The results support the three-dimensional factor structure of sustainability for apparel brands and reveal that a second-order sustainability exerts a significant impact on both brand image and brand trust. The findings provide theoretical implications for researchers and practical managerial suggestions for marketers.

Prediction Wave Transformation in the Kwangan Beach (광안해역에서의 파랑변형예측)

  • 박정철;김재중;이정만
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2000.04a
    • /
    • pp.75-81
    • /
    • 2000
  • Water waves propagate over irregular bottom bathymetry are transformed by refraction, diffraction, shoaling, reflection etc. Principal factor of wave transform is bottom bathymetry, but in case of current field, current is another important factor which effect wave transformation. The governing equation of this study is develop as wave-current equation type to investigate the effect of wave-current interaction. This wave-current model was applied to the Kwangan beach which is located at Pusan. The numerical simulation results of this model show the characteristics of wave transformation and flow pattern around the Kwangan beach fairly well.

  • PDF

Prediction of Wave Transformation in the Kwangan Beach (광안해역에서의 파랑변형예측)

  • 박정철;김재중;김인철
    • Journal of Ocean Engineering and Technology
    • /
    • v.15 no.2
    • /
    • pp.6-10
    • /
    • 2001
  • Water waves propagate over irregular bottom bathymetry are transformed by refraction, diffraction, shoaling, reflection etc. Principal factor of wave transform is bottom bathymetry, but in case of current field, current is another important factor which effect wave transformation. The governing equation of this study is develope as wave-current equation type to investigate the effect of wave-current interaction. It starts from Berkhoff's(1972) mild slope equation and is transformed to time-dependent hyperbolic type equation by using variational principal. Finally the governing equation is shown as a parabolic type equation by splitting method. This wave-current model was applied to the kwangan beach which is located at Pusan. The numerical simulation results of this model show the characteristics of wave transformation and flow pattern around the Kwangan beach fairly well.

  • PDF