• Title/Summary/Keyword: bottom friction

Search Result 213, Processing Time 0.025 seconds

Influence of the Flow Stress of the Rivet on the Numerical Prediction of the Self-Piercing Rivet (SPR) Joining (Self-Piercing Rivet 접합공정의 수치예측에 미치는 리벳 유동응력의 영향)

  • Kim, S.H.;Bae, G.;Song, J.H.;Park, K.Y.;Park, N.
    • Transactions of Materials Processing
    • /
    • v.29 no.5
    • /
    • pp.257-264
    • /
    • 2020
  • This paper is concerned with the influence of the plastic property of the rivet on the numerical prediction of the Self-Piercing Rivet (SPR) Joining. In order to predict the plastic property of the rivet, a ring compression specimen was directly fabricated from the rivet used for the mechanical joining of dissimilar materials, and the FE analysis together with the ring compression test was iteratively carried out by changing the plastic property of the rivet. For reliable FE analysis, a friction coefficient was estimated based on a friction calibration curve, measuring the reductions in inner diameter and height of the ring specimen after the compression test. From each simulation result, the force-displacement curves were then compared from each other so as to obtain the rivet plastic property that shows good agreement with the experimental result. The SPR joining between GA590 1.0t and Al5052 2.0t was conducted, and the numerical prediction was performed with the use of the plastic property evaluated based on the inverse analysis and the one referred from Mori et al. [11]. Comparison of the experiment and the numerical predictions in terms of the interlock and bottom thickness revealed that the reliable evaluation of the plastic property of the rivet is necessary for the trustworthy numerical prediction of the SPR joining.

Effects of Discrete Rib-Turbulators on Heat/Mass Transfer Augmentation in a Rectangular Duct (사각 덕트 내부 열전달 향상을 위한 요철의 단락 효과)

  • Kwon, Hyuk-Jin;Wu, Seong-Je;Cho, Hyung-Hee
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.5
    • /
    • pp.744-752
    • /
    • 2000
  • The influence of arrangement and length of discrete ribs on heat/mass transfer and friction loss is investigated. Mass transfer experiments are conducted to obtain the detailed local heat/mass transfer information on the ribbed wall. The aspect ratio (width/height) of the duct is 2.04 and the rib height is one tenth of the duct height, such that the ratio of the rib height to hydraulic diameter is 0.0743. The ratio of rib-to-rib distance to rib height is 10. The discrete ribs were made by dividing each continuous rib into 2, 3 or 5 pieces and attached periodically to the top and the bottom walls of the duct with a parallel orientation The combined effects of rib angle and length of the discrete ribs on heat/mass transfer ae considered for the rib angles $({\alpha})\;of\;90^{\circ}\;and\;45^{\circ}$. As the number of the discrete ribs increases, the uniformity of the heat/mass transfer distributions increases. For $(\alpha})=90^{\circ}$, the heat/mass transfer enhancement with the discrete ribs is remarkable, while the heat/mass transfer performances are slightly higher than that of the transverse continuous ribs due to the accompanied high friction loss penalty. For $(\alpha})=90^{\circ}$, the average heat/mass transfer coefficients and the heat/mass transfer performances decrease slightly with the discrete ribs compared to the case of the angled continuous ribs.

A Review on the Performance Test of a High-Speed Planing Hull with 35 knot Speed by Appling the Streamlined Step of Hull Form (유선형 스텝 선형을 적용한 35 knot급 고속활주선의 성능평가에 대한 고찰)

  • Moon, Byung Young;Go, Ho Nam;Lee, Ki Yeol
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.30 no.3
    • /
    • pp.95-102
    • /
    • 2018
  • As a recent technical approach, a high-speed planing hull was tried to realize a friction reducing system by simultaneously actuating the triple streamlined step hull form in association with optimum speed of 35 knot planing for fishing boat. In this approach, the streamlined step hull form with triple structure of type was attached under the bottom of high-speed planing hull, while a friction resistance is reduced in the process of running at the speed of 35 knot. In addition, this research was to make a performance test as to the manufactured product and acquire the purposed values and the development items. Actually, after manufacturing the desired prototype of high-speed planing hull, the significant items, fuel efficiency (second) and amount of fuel consumption (degree) including maximum speed (knot) were estimated for a performance test. And tensile strength (MPa) and bend strength (MPa) as to the completed prototype like a high speed planing hull were also acquired during the test.

A Model for Liquid Circulation Velocity in Airlift Reactors (공기부양반응기 내에서의 액체순환속도를 위한 모델)

  • Keun Ho Choi
    • Korean Chemical Engineering Research
    • /
    • v.61 no.3
    • /
    • pp.446-455
    • /
    • 2023
  • A mathematical model for predicting the liquid circulation velocity in an airlift reactor was developed based on the mechanical energy balance of the fluid circulation loop. The model considered the energy loss due to a 90° turn, the energy loss due to friction, and the energy loss due to the change in cross-sectional area at each part of the reactor. The model that separately considered the loss coefficients related to friction, direction change, and cross-sectional area change was able to predict the liquid circulation velocity better than the previous model using lumped parameters. The liquid circulation velocity was measured by the tracer pulse method. Most of our experimental results obtained in external-loop airlift reactors, which had the top and bottom connecting pipes, as well as other investigators' results obtained in various types of airlift reactors, were well predicted by the developed model with an error within 20%. Useful empirical equations for the loss coefficient related to the 90° turn of the circulating fluid were obtained in external and internal-loop airlift reactors and used to predict the liquid circulation velocity.

FEM Numerical Formulation for Debris Flow (토석류 유동해석을 위한 유한요소 수식화)

  • Shin, Hosung
    • Journal of the Korean Geotechnical Society
    • /
    • v.30 no.10
    • /
    • pp.55-65
    • /
    • 2014
  • Recent researches on debris flow is focused on understanding its movement mechanism and building a numerical simulator to predict its behavior. However, previous simulators emulating fluid-like debris flow have limitations in numerical stability, geometric modeling and application of various boundary conditions. In this study, depth integration is applied to continuity equation and force equilibrium for debris flow. Thickness of sediment, and average velocities in x and y flow direction are chosen for main variables in the analysis, which improve numerical stability in the area with zero thickness. Petrov-Galerkin formulation uses a discontinuous test function of the weighted matrix from DG scheme. Presented mechanical constitutive model combines fluid and granular behaviors for debris flow. Effects on slope angle, inducing debris height, and bottom friction resistance are investigated for a simple slope. Numerical results also show the effect of embankment at the bottom of the slope. Developed numerical simulator can assess various risk factors for the expected area of debris flow, and facilitate embankment design in order to minimize damage.

Numerical Modeling of Ebb-Dominant Tidal Flow in the Mokpo Coastal Zone (목포해역 낙조류 우세현상의 수치모의)

  • Jung, Tae-Sung;Choi, Jong-Hwa
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.22 no.5
    • /
    • pp.333-343
    • /
    • 2010
  • In Mokpo coastal zone, the characteristics showing ebb-dominant tidal flow was confirmed by analysis of observed tide and tidal currents, Physical factors occurring ebb-dominant flow were reviewed. Influence of critical depth for drying, bottom shear stress, coastal reclamation, tidal amplitude, nonlinear tide, and eddy viscosity on the change of ebb-dominant flow was investigated by applying a two-dimensional circulation model. The simulation results for a variety of conditions showed that eddy viscosity and critical depth for drying does little or no impact on the generation of asymmetric flow. Strong bottom friction stress makes ebb-dominant flow clearly. Change of tidal flat into land swells ebb- dominant flow, and change of tidal flat into sea disappears ebb-dominant flow. Nonlinear tides play a decisive role in the generation of asymmetrical tidal flow. Non-linear tides should be included in the open boundary conditions of hydrodynamic modeling in the Mokpo coastal zone.

ON TRANSPORTS DRIVEN BY TIME-VARYING WINDS IN HORIZONTALLY UNBOUNDED SHALLOW SEAS (시간변화적 바람에 따른 넓은 천해에서의 해수유랑)

  • Kang, Yong Q.
    • 한국해양학회지
    • /
    • v.17 no.2
    • /
    • pp.41-50
    • /
    • 1982
  • We present theoretical models for the unstedy transports driven by the time-varying wind stress in horizontally unbounded shallow seas of an uniform depth. We derive linearized transport equations that inchude the acceleration, the Coriolis firce, the wind stress and the bottom friction. The steady transport in a shallow sea is different from the classical Ekman transport because of a presence of non-negligible bottom fricttttion. The transient reansport and an inertial oscillation of which frequency of rotation is the same as the frequency of the wind stress forcing. The transprt associated with a wind stress of which direction changes linearlywith time is decribed by a superpoeition so a free inertial oscillation with a pweiod of one inertial day, The theoretical models of the transports are useful in understanding the time-varying currents and the transports of nutrients in shallow seas.

  • PDF

Reproduction of Shallow Tides and Tidal Asymmetry by Using Finely Resolved Grid on the West Coast of Korea (서해연안 상세해상을 통한 천해조석 및 조석비대칭 재현)

  • Suh, Seung-Won
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.23 no.4
    • /
    • pp.313-325
    • /
    • 2011
  • Finite element grid system using h-refinement on the Yellow Sea was constructed based on previous study (Suh, 1999b) from 14 K to 210 K and special attention was concentrated on refining the coastal zone. In grid generation, depth change between adjacent points and non-dimensional tidal wave length ratio were considered. As a result approximately a quarter of the total nodes are located nearby 5 m of shallow area. Accurate bathymetry data using 30's and ETOPO1 with open boundary conditions of 8 major tidal constituents extracted automatically from FES2004 have been applied. In tidal simulation a 3-dimensional nonlinear harmonic model was setup and tidal amplification due to changes in vertical turbulent and bottom friction were simulated. In this study not only 8 major tidal constituents but also nonlinear shallow tides $M_4,$, $MS_4$ and long period $M_f,$, $M_{sf}$ were reproduced. It is found that implication of spatial variation of friction coefficient plays a very important role in reproduction of astronomical and shallow tides which are computed by iterative computation of nonlinear terms. Also it should be considered differently with respect to tidal periods. To understand the distribution of tidal asymmetry, amplitude ratio of $M_4/M_2$ and phase differences $2g(M_2)-g(M_4)$ were calculated. Tidal distortion ratio marks up to 0.2 on the west coast showing shallow coastal characteristics and somewhat wide range of ebb-dominances in front of Mokpo area are reproduced.

The Utilization of Pond Ash as Embankment and Backfill Material (매립된 석탄 혼합회의 성토재 및 뒤채움재로서의 활용에 관한 연구)

  • Kim, Dae-Hyeon;Ki, Wan-Seo;Kim, Sun-Hak
    • The Journal of Engineering Geology
    • /
    • v.20 no.3
    • /
    • pp.297-310
    • /
    • 2010
  • This study represents basic research into the utilization of mixed ash (fly ash and bottom ash) from the ash pond of the Taean Thermal Power Plant as a construction material. We conducted physical and mechanical experiments on the mixed ash and examined its engineering characteristics in terms of its use as a material for road landfill and structure backfill. We evaluated the physical and chemical characteristics of the ash by performing tests to determine specific gravity, maximum and minimum density, liquid limit and plastic limit, grain size distribution, composition (by X-ray diffraction), and loss on ignition. We also evaluated the mechanical characteristics by testing for permeability, compaction, CBR, and tri-axial compression. The experiments on the mixed ash yielded a specific gravity of 2.18-2.20, dry density of $9.38-13.32\;kN/m^3$, modified CBR of 16.5%-21%, permeability coefficient of 1.32 to $1.89-10^{-4}cm/sec$, and drained friction angle of $36.43^{\circ}-41.39^{\circ}$. The physical and mechanical properties of the mixed ash do not meet the quality standards stipulated for road landfill and structure backfill materials. Mixed ash with a high content of fly ash failed to meet some of the quality standards. Therefore, in order to utilize the mixed ash as a material for road landfill and structure backfill, it is necessary to improve its properties by mixing with bottom ash.

Shear Strength Characteristics of Artificial Soil Mixture with Pond Ash (매립석탄회가 혼합된 인공혼합토의 전단특성)

  • Kim, Kyoungo;Park, Seongwan
    • Journal of the Korean GEO-environmental Society
    • /
    • v.14 no.10
    • /
    • pp.39-47
    • /
    • 2013
  • Recently, there have been various domestic construction activities related to the reclamation of the dredged soils to expand the land use. However, the reclaimed grounds made of the dredged soils cause various problems due to highly compressible and low shear strength nature. Particularly, this nature induces huge problems in case of the harbor facilities and road construction on the reclaimed sites. Furthermore, in the reclamation activities, the marine dredged soils are often used instead of the well sorted sand, which induces problems of compressibilities. Therefore, in this study, the mechanical characteristics of artificial soil mixture of kaolinite representing the marine dredged soils and the pond ash. A large consolidometer is designed and manufactured to produce the artificial soil mixture. To represent various mixing ratio between the fly ash and bottom ash in the pond ash, six samples with the same stress history are made with different mixing ratio among kaolinite, bottom ash and fly ash. Isotropically consolidated and undrained compression tests are performed to investigate the shear characteristics of soil mixtures. Based on the experimental results, as the components of mixed ash increase, the friction angle increase and the cohesion values decrease. Also, the porepressure parameters at failure, Af increase with the mixing components of the pond ash. The portion of bottom ash has more impact on the shear behavior than that of fly ash.