DOI QR코드

DOI QR Code

FEM Numerical Formulation for Debris Flow

토석류 유동해석을 위한 유한요소 수식화

  • Shin, Hosung (Dept. of Civil and Environmental Engrg., Univ. of Ulsan)
  • 신호성 (울산대학교 건설환경공학부)
  • Received : 2014.08.31
  • Accepted : 2014.10.23
  • Published : 2014.10.31

Abstract

Recent researches on debris flow is focused on understanding its movement mechanism and building a numerical simulator to predict its behavior. However, previous simulators emulating fluid-like debris flow have limitations in numerical stability, geometric modeling and application of various boundary conditions. In this study, depth integration is applied to continuity equation and force equilibrium for debris flow. Thickness of sediment, and average velocities in x and y flow direction are chosen for main variables in the analysis, which improve numerical stability in the area with zero thickness. Petrov-Galerkin formulation uses a discontinuous test function of the weighted matrix from DG scheme. Presented mechanical constitutive model combines fluid and granular behaviors for debris flow. Effects on slope angle, inducing debris height, and bottom friction resistance are investigated for a simple slope. Numerical results also show the effect of embankment at the bottom of the slope. Developed numerical simulator can assess various risk factors for the expected area of debris flow, and facilitate embankment design in order to minimize damage.

최근 토석류의 이동 메커니즘에 대한 연구와 거동 예측을 위한 해석 프로그램의 개발이 활발히 진행중이다. 하지만, 토석류를 유체이동으로 간주하는 기존의 프로그램들은 수치적인 안정성과 모델링 그리고 다양한 경계조건의 적용에 대한 제약이 있다. 본 연구에서는 토석류의 유동현상에 대한 연속방정식과 힘평형 방정식에 대하여 깊이적분을 수행하였다. 토체의 두께 h, x와 y 흐름방향의 평균속도 $\bar{u}$, $\bar{v}$를 주변수로 채택하여 흐름이 없는 해석영역에 대한 수치적인 안정성을 확보하였다. DG기법에 의한 가중행렬을 산정하고 유동방향을 고려한 불연속 시험함수를 이용하여 Petrov-Galerkin 수식화를 수행하였다. 그리고 토석류의 유체 및 토립자의 특성을 동시에 고려할 수 있는 역학적 구성모델을 제시하였다. 단일경사 사면에서 사면경사, 토사 유발량, 저면 마찰 저항이 토석류 흐름특성에 미치는 영향을 비교 분석하였다. 그리고 수치해석을 통하여 사면 하부에 설치된 제방의 영향을 분석하였다. 개발된 해석프로그램을 활용하여 토석류 발생예상 지역의 다양한 위험인자에 대한 평가를 수행하고, 피해를 최소화하기 위한 시설물의 설계방안을 제안할 수 있을 것으로 판단된다.

Keywords

References

  1. Atallah, M. and Hazzab, A. (2013), "A Petrov-Galerkin scheme for modeling 1D channel flow with varying width and topography", Acta Mechanica, 224(4), 707-725. https://doi.org/10.1007/s00707-012-0781-2
  2. Berger, R.C. and Stockstill, R.L. (1995), "Finite-element model for high-velocity channels", ASCE Journal of Hydraulic Engineering, 121(10), 710-716. https://doi.org/10.1061/(ASCE)0733-9429(1995)121:10(710)
  3. Brooks, A.N. and Hughes, T.J.R. (1982), "Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations", Comput. Methods Appl. Mech. Engrg., 32, 199-259. https://doi.org/10.1016/0045-7825(82)90071-8
  4. Denlinger, R.P. and Iverson, R.M. (2004), "Granular avalanches across irregular three dimensional terrain. 1. Theory and computation", J. Geophys. Res., 109, F01014.
  5. Hicks, F.E. and Steffler, P.M. (1992), "Characteristic Dissipative Galerkin scheme for open-channel flow", ASCE Journal of Hydraulic Engineering, 118(2), 337-352. https://doi.org/10.1061/(ASCE)0733-9429(1992)118:2(337)
  6. Iverson, R.M. and Denlinger, R.P. (2001), "Flow of variably fluidized granular masses across three-dimensional terrain: 1. Coulomb mixture theory", J. Geophys. Res., 106, 537-552. https://doi.org/10.1029/2000JB900329
  7. Iverson, R.M. (2003), "The debris-flow rheology myth", In Debris Flow Hazards Mitigation: Mechanics, Prediction and Assessment (ed. Rickenmann & R. C. Chen), Millpress, Rotterdam. 303-314.
  8. Julien, P.Y. and Paris, A. (2010), "Mean velocity of mudflows and debris flows", J. Hydraul. Eng., 136 (9), 676-679. https://doi.org/10.1061/(ASCE)HY.1943-7900.0000224
  9. Kokusho, T. and Hiraga, Y. (2012), "Dissipated energies and friction coefficients in granular flow by flume tests", Soils and Foundations, 52(2), 356-367. https://doi.org/10.1016/j.sandf.2012.02.011
  10. Lee, M.J. and Kim, Y.T. (2013), "Movement and deposition characteristics of debris flow according to rheological factors", Journal of the Korean Geotechnical Society, 29(5), 19-27. https://doi.org/10.7843/kgs.2013.29.5.19
  11. Medina, V., Hurlimann, M. and Bateman, A. (2008), "Application of FLATModel, a 2-D finite volume code, to debris flows in the northeastern part of the Iberian Peninsula", Landslides, 5, 127-142. https://doi.org/10.1007/s10346-007-0102-3
  12. O'Brien, J.S. and Julien, P.Y. (1988), "Laboratory analysis of mudflow properties", J. Hydraul. Eng., 114, 877-887. https://doi.org/10.1061/(ASCE)0733-9429(1988)114:8(877)
  13. O'Brien, J.S., Julien, P.J. and Fullerton, W.T. (1993), "Two-dimensional water flood and mudflow simulation", J. Hyd. Eng., 119(2), 244-261. https://doi.org/10.1061/(ASCE)0733-9429(1993)119:2(244)
  14. Julien, P. and Lan, Y. (1991), "Rheology of hyperconcentrations", J. Hydrol. Eng., 117(3), 346-353. https://doi.org/10.1061/(ASCE)0733-9429(1991)117:3(346)
  15. Pitman, E.B. and Le, L. (2005), "A two-fluid model for avalanche and debris flow", Phil. Trans. R. Soc. A, 363, 1573-1601. https://doi.org/10.1098/rsta.2005.1596
  16. Pudasaini, S. P. (2012), "A general two-phase debris flow model", J. Geophys. Res. 117, F03010.
  17. Quan Luna, B., Blahut, J., van Westen, C.J., Sterlacchini, S., van Asch, T.W.J., and Akbas, S.O. (2011), "The application of numerical debris flow modelling for the generation of physical vulnerability curves", Nat. Hazards Earth Syst. Sci., 11, 2047-2060. https://doi.org/10.5194/nhess-11-2047-2011
  18. Salciarini, D., Tamagnini, C. and Conversini, P. (2010), "Discrete element modeling of debris-avalanche impact on earthfill barriers", Phys. Chem. Earth, 35, 172-181. https://doi.org/10.1016/j.pce.2009.05.002
  19. Shin, H. (2014), "Numerical formulation for flow analysis of dredged soil", Journal of the Korean Geo-Environmental Society, 15(3), 41-48. https://doi.org/10.14481/jkges.2014.15.3.41
  20. Simo, J.C. and Taylor, R.L. (1985), "Consistent tangent operators for rate-independent elastoplasticity", Comput. Methods Appl. Mech. Engrg., 48, 101-118. https://doi.org/10.1016/0045-7825(85)90070-2
  21. Takahashi, T. (2007), Debris flow: Mechanics, Prediction and Countermeasures, Taylor & Francis, London, p 440.
  22. Teisson, C., Simonin, O., Galland, J.C. and Laurence, D. (1992), "Turbulence and mud sedimentation: a Reynolds-stress model and a two-phase flow model", Proceedings of 23rd Int. Conf. on Coastal Engineering, Venice, 2853-2866.
  23. Vassilevski, Y. V., Nikitin, K. D., Olshanskii, M. A., and Terekhov, K. M. (2012), "CFD technology for 3D simulation of large-scale hydrodynamic events and disasters", Russian Journal of Numerical Analysis and Mathematical Modelling, 27(4), 399-412.
  24. Vreugdenhil, C. B. (1994), Numerical methods for shallow water flow, Kluwer Acad., p. 261.
  25. Wu, Y.H., Liu, K.F. and Chen, Y.C. (2013), "Comparison between FLO-2D and Debris-2D on application of assessment of granular debris flow hazard with case study", J Mt Sci., 10(2), 293-304. https://doi.org/10.1007/s11629-013-2511-1

Cited by

  1. Characteristics of Strength and Water Content of Mountain Ground Based on Rainfall Conditions vol.19, pp.4, 2019, https://doi.org/10.9798/kosham.2019.19.4.115
  2. Numerical Analysis of the Deposit Shape of Debris Flow using Eddy Viscosity vol.19, pp.4, 2014, https://doi.org/10.9798/kosham.2019.19.4.65