References
- Atallah, M. and Hazzab, A. (2013), "A Petrov-Galerkin scheme for modeling 1D channel flow with varying width and topography", Acta Mechanica, 224(4), 707-725. https://doi.org/10.1007/s00707-012-0781-2
- Berger, R.C. and Stockstill, R.L. (1995), "Finite-element model for high-velocity channels", ASCE Journal of Hydraulic Engineering, 121(10), 710-716. https://doi.org/10.1061/(ASCE)0733-9429(1995)121:10(710)
- Brooks, A.N. and Hughes, T.J.R. (1982), "Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations", Comput. Methods Appl. Mech. Engrg., 32, 199-259. https://doi.org/10.1016/0045-7825(82)90071-8
- Denlinger, R.P. and Iverson, R.M. (2004), "Granular avalanches across irregular three dimensional terrain. 1. Theory and computation", J. Geophys. Res., 109, F01014.
- Hicks, F.E. and Steffler, P.M. (1992), "Characteristic Dissipative Galerkin scheme for open-channel flow", ASCE Journal of Hydraulic Engineering, 118(2), 337-352. https://doi.org/10.1061/(ASCE)0733-9429(1992)118:2(337)
- Iverson, R.M. and Denlinger, R.P. (2001), "Flow of variably fluidized granular masses across three-dimensional terrain: 1. Coulomb mixture theory", J. Geophys. Res., 106, 537-552. https://doi.org/10.1029/2000JB900329
- Iverson, R.M. (2003), "The debris-flow rheology myth", In Debris Flow Hazards Mitigation: Mechanics, Prediction and Assessment (ed. Rickenmann & R. C. Chen), Millpress, Rotterdam. 303-314.
- Julien, P.Y. and Paris, A. (2010), "Mean velocity of mudflows and debris flows", J. Hydraul. Eng., 136 (9), 676-679. https://doi.org/10.1061/(ASCE)HY.1943-7900.0000224
- Kokusho, T. and Hiraga, Y. (2012), "Dissipated energies and friction coefficients in granular flow by flume tests", Soils and Foundations, 52(2), 356-367. https://doi.org/10.1016/j.sandf.2012.02.011
- Lee, M.J. and Kim, Y.T. (2013), "Movement and deposition characteristics of debris flow according to rheological factors", Journal of the Korean Geotechnical Society, 29(5), 19-27. https://doi.org/10.7843/kgs.2013.29.5.19
- Medina, V., Hurlimann, M. and Bateman, A. (2008), "Application of FLATModel, a 2-D finite volume code, to debris flows in the northeastern part of the Iberian Peninsula", Landslides, 5, 127-142. https://doi.org/10.1007/s10346-007-0102-3
- O'Brien, J.S. and Julien, P.Y. (1988), "Laboratory analysis of mudflow properties", J. Hydraul. Eng., 114, 877-887. https://doi.org/10.1061/(ASCE)0733-9429(1988)114:8(877)
- O'Brien, J.S., Julien, P.J. and Fullerton, W.T. (1993), "Two-dimensional water flood and mudflow simulation", J. Hyd. Eng., 119(2), 244-261. https://doi.org/10.1061/(ASCE)0733-9429(1993)119:2(244)
- Julien, P. and Lan, Y. (1991), "Rheology of hyperconcentrations", J. Hydrol. Eng., 117(3), 346-353. https://doi.org/10.1061/(ASCE)0733-9429(1991)117:3(346)
- Pitman, E.B. and Le, L. (2005), "A two-fluid model for avalanche and debris flow", Phil. Trans. R. Soc. A, 363, 1573-1601. https://doi.org/10.1098/rsta.2005.1596
- Pudasaini, S. P. (2012), "A general two-phase debris flow model", J. Geophys. Res. 117, F03010.
- Quan Luna, B., Blahut, J., van Westen, C.J., Sterlacchini, S., van Asch, T.W.J., and Akbas, S.O. (2011), "The application of numerical debris flow modelling for the generation of physical vulnerability curves", Nat. Hazards Earth Syst. Sci., 11, 2047-2060. https://doi.org/10.5194/nhess-11-2047-2011
- Salciarini, D., Tamagnini, C. and Conversini, P. (2010), "Discrete element modeling of debris-avalanche impact on earthfill barriers", Phys. Chem. Earth, 35, 172-181. https://doi.org/10.1016/j.pce.2009.05.002
- Shin, H. (2014), "Numerical formulation for flow analysis of dredged soil", Journal of the Korean Geo-Environmental Society, 15(3), 41-48. https://doi.org/10.14481/jkges.2014.15.3.41
- Simo, J.C. and Taylor, R.L. (1985), "Consistent tangent operators for rate-independent elastoplasticity", Comput. Methods Appl. Mech. Engrg., 48, 101-118. https://doi.org/10.1016/0045-7825(85)90070-2
- Takahashi, T. (2007), Debris flow: Mechanics, Prediction and Countermeasures, Taylor & Francis, London, p 440.
- Teisson, C., Simonin, O., Galland, J.C. and Laurence, D. (1992), "Turbulence and mud sedimentation: a Reynolds-stress model and a two-phase flow model", Proceedings of 23rd Int. Conf. on Coastal Engineering, Venice, 2853-2866.
- Vassilevski, Y. V., Nikitin, K. D., Olshanskii, M. A., and Terekhov, K. M. (2012), "CFD technology for 3D simulation of large-scale hydrodynamic events and disasters", Russian Journal of Numerical Analysis and Mathematical Modelling, 27(4), 399-412.
- Vreugdenhil, C. B. (1994), Numerical methods for shallow water flow, Kluwer Acad., p. 261.
- Wu, Y.H., Liu, K.F. and Chen, Y.C. (2013), "Comparison between FLO-2D and Debris-2D on application of assessment of granular debris flow hazard with case study", J Mt Sci., 10(2), 293-304. https://doi.org/10.1007/s11629-013-2511-1
Cited by
- Characteristics of Strength and Water Content of Mountain Ground Based on Rainfall Conditions vol.19, pp.4, 2019, https://doi.org/10.9798/kosham.2019.19.4.115
- Numerical Analysis of the Deposit Shape of Debris Flow using Eddy Viscosity vol.19, pp.4, 2014, https://doi.org/10.9798/kosham.2019.19.4.65