• Title/Summary/Keyword: boron emitter

Search Result 26, Processing Time 0.024 seconds

Fabrication and Characteristics of High Efficiency Silicon PERL (passivated emitter and rear locally-diffused cell) Solar Cells (PERL (passivated emitter and rear locally-diffused cell) 방식을 이용한 고효율 Si 태양전지의 제작 및 특성)

  • Kwon, Oh-Joon;Jeoung, Hun;Nam, Ki-Hong;Kim, Yeung-Woo;Bae, Seung-Chun;Park, Sung-Keoun;Kwon, Sung-Yeol;Kim, Woo-Hyun;Kim, Ki-Wan
    • Journal of Sensor Science and Technology
    • /
    • v.8 no.3
    • /
    • pp.283-290
    • /
    • 1999
  • The $n^+/p/p^+$ junction PERL solar cell of $0.1{\sim}2{\Omega}{\cdot}cm$ (100) p type silicon wafer was fabricated through the following steps; that is, wafer cutting, inverted pyramidally textured surfaces etching by KOH, phosphorus and boron diffusion, anti-reflection coating, grid formation and contact annealing. At this time, the optical characteristics of device surface and the efficiency of doping concentration for resistivity were investigated. And diffusion depth and doping concentration for n+ doping were simulated by silvaco program. Then their results were compared with measured results. Under the illumination of AM (air mass)1.5, $100\;mW/cm^2$ $I_{sc}$, $V_{oc}$, fill factor and the conversion efficiency were 43mA, 0.6 V, 0.62. and 16% respectively.

  • PDF

Fabrication and Electrical Characteristics of $p^{+}$-n Ultra Shallow Junction Diode with Co/Ti Bilayer Silicide (Co/Ti 이중막 실리사이드를 이용한 $p^{+}$-n극저접합 다이오드의 제작과 전기적 특성)

  • Chang, Gee-Keun;Ohm, Woo-Yong;Chang, Ho-Jung
    • Korean Journal of Materials Research
    • /
    • v.8 no.4
    • /
    • pp.288-292
    • /
    • 1998
  • The p*-n ultra shallow junction diode with Co/Ti bilayer silicide was formed by ion implantation of $BF_{2}$ energy : 30KeV, dose : $5\times10^{15}cm^{-2}$] onto the n-well Si(100) region and RTA-silicidation of the evaporated Co($120\AA$)/Ti($40\AA$) double layer. The fabricated diode exhibited ideality factor of 1.06, specific contact resistance of $1.2\times10^{-6}\Omega\cdot\textrm{cm}^2$ and leakage current of $8.6\muA/\textrm{cm}^2$(-3V) under the reverse bias of 3V. The sheet resistance of silicided emitter region, the boron concentration at silicide/Si interface and the junction depth including silicide layer of ($500\AA$ were about $8\Omega\Box$, $6\times10^{19}cm^{-3}$, and $0.14\mu{m}$, respectively. In the fabrication of diode, the application of Co/Ti bilayer silicide brought improvement of ideality factor on the current-voltage characteristics as well as reduction of emitter sheet resistance and specific contact resistance, while it led to a little increase of leakage current.

  • PDF

Passivation Properties of Phosphorus doped Amorphous Silicon Layers for Tunnel Oxide Carrier Selective Contact Solar Cell (터널 산화막 전하선택형 태양전지를 위한 인 도핑된 비정질 실리콘 박막의 패시베이션 특성 연구)

  • Lee, Changhyun;Park, Hyunjung;Song, Hoyoung;Lee, Hyunju;Ohshita, Yoshio;Kang, Yoonmook;Lee, Hae-Seok;Kim, Donghwan
    • Current Photovoltaic Research
    • /
    • v.7 no.4
    • /
    • pp.125-129
    • /
    • 2019
  • Recently, carrier-selective contact solar cells have attracted much interests because of its high efficiency with low recombination current density. In this study, we investigated the effect of phosphorus doped amorphous silicon layer's characteristics on the passivation properties of tunnel oxide passivated carrier-selective contact solar cells. We fabricated symmetric structure sample with poly-Si/SiOx/c-Si by deposition of phosphorus doped amorphous silicon layer on the silicon oxide with subsequent annealing and hydrogenation process. We varied deposition temperature, deposition thickness, and annealing conditions, and blistering, lifetime and passivation quality was evaluated. The result showed that blistering can be controlled by deposition temperature, and passivation quality can be improved by controlling annealing conditions. Finally, we achieved blistering-free electron carrier-selective contact with 730mV of i-Voc, and cell-like structure consisted of front boron emitter and rear passivated contact showed 682mV i-Voc.

A effect of the back contact silicon solar cell with surface texturing size and density (표면 텍스쳐링 크기와 밀도가 후면 전극 실리콘 태양전지에 미치는 영향)

  • Jang, Wanggeun;Jang, Yunseok;Pak, Jungho
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.112.1-112.1
    • /
    • 2011
  • The back contact solar cell (BCSC) has several advantages compared to the conventional solar cell since it can reduce grid shadowing loss and contact resistance between the electrode and the silicon substrate. This paper presents the effect of the surface texturing of the silicon BCSC by varying the texturing depth or the texturing gap in the commercially available simulation software, ATHENA and ATLAS of the company SILVACO. The texturing depth was varied from $5{\mu}m$ to $150{\mu}m$ and the texturing gap was varied from $1{\mu}m$ to $100{\mu}m$ in the simulation. The resulting efficiency of the silicon BCSC was evaluated depending on the texturing condition. The quantum efficiency and the I-V curve of the designed silicon BCSC was also obtained for the analysis since they are closely related with the solar cell efficiency. Other parameters of the simulated silicon BCSC are as follows. The substrate was an n-type silicon, which was doped with phosphorous at $6{\times}10^{15}cm^{-3}$, and its thickness was $180{\mu}m$, a typical thickness of commercial solar cell substrate thickness. The back surface field (BSF) was $1{\times}10^{20}\;cm^{-3}$ and the doping concentration of a boron doped emitter was $8.5{\times}10^{19}\;cm^{-3}$. The pitch of the silicon BCSC was $1250{\mu}m$ and the anti-reflection coating (ARC) SiN thickness was $0.079{\mu}m$. It was assumed that the texturing was anisotropic etching of crystalline silicon, resulting in texturing angle of 54.7 degrees. The best efficiency was 25.6264% when texturing depth was $50{\mu}m$ with zero texturing gap in case of low texturing depth (< $100{\mu}m$).

  • PDF

Study on Auger Recombination Control using Barrier SiO2 in High-Quality Polysilicon/Tunneling oxide based Emitter Formation (고품질 polysilicon/tunneling oxide 기반의 에미터 형성 공정에서의 Auger 재결합 조절 연구)

  • Huiyeon Lee;SuBeom Hong;Donghwan Kim
    • Current Photovoltaic Research
    • /
    • v.12 no.2
    • /
    • pp.31-36
    • /
    • 2024
  • Passivating contacts are a promising technology for achieving high efficiency Si solar cells by reducing direct metal/Si contact. Among them, a polysilicon (poly-Si) based passivating contact solar cells achieve high passivation quality through a tunnel oxide (SiOx) and poly-Si. In poly-Si/SiOx based solar cells, the passivation quality depends on the amount of dopant in-diffused into the bulk-Si. Therefore, our study fabricated cells by inserting silicon oxide (SiO2) as a doping barrier before doping and analyzed the barrier effect of SiO2. In the experiments, p+ poly-Si was formed using spin on dopant (SOD) method, and samples ware fabricated by controlling formation conditions such as existence of doping barrier and poly-Si thickness. Completed samples were measured using quasi steady state photoconductance (QSSPC). Based on these results, it was confirmed that possibility of achieving high Voc by inserting a doping barrier even with thin poly-Si. In conclusion, an improvement in implied Voc of up to approximately 20 mV was achieved compared to results with thicker poly-Si results.

A Review on TOPCon Solar Cell Technology

  • Yousuf, Hasnain;Khokhar, Muhammad Quddamah;Chowdhury, Sanchari;Pham, Duy Phong;Kim, Youngkuk;Ju, Minkyu;Cho, Younghyun;Cho, Eun-Chel;Yi, Junsin
    • Current Photovoltaic Research
    • /
    • v.9 no.3
    • /
    • pp.75-83
    • /
    • 2021
  • The tunnel oxide passivated contact (TOPCon) structure got more consideration for development of high performance solar cells by the introduction of a tunnel oxide layer between the substrate and poly-Si is best for attaining interface passivation. The quality of passivation of the tunnel oxide layer clearly depends on the bond of SiO in the tunnel oxide layer, which is affected by the subsequent annealing and the tunnel oxide layer was formed in the suboxide region (SiO, Si2O, Si2O3) at the interface with the substrate. In the suboxide region, an oxygen-rich bond is formed as a result of subsequent annealing that also improves the quality of passivation. To control the surface morphology, annealing profile, and acceleration rate, an oxide tunnel junction structure with a passivation characteristic of 700 mV or more (Voc) on a p-type wafer could achieved. The quality of passivation of samples subjected to RTP annealing at temperatures above 900℃ declined rapidly. To improve the quality of passivation of the tunnel oxide layer, the physical properties and thermal stability of the thin layer must be considered. TOPCon silicon solar cell has a boron diffused front emitter, a tunnel-SiOx/n+-poly-Si/SiNx:H structure at the rear side, and screen-printed electrodes on both sides. The saturation currents Jo of this structure on polished surface is 1.3 fA/cm2 and for textured silicon surfaces is 3.7 fA/cm2 before printing the silver contacts. After printing the Ag contacts, the Jo of this structure increases to 50.7 fA/cm2 on textured silicon surfaces, which is still manageably less for metal contacts. This structure was applied to TOPCon solar cells, resulting in a median efficiency of 23.91%, and a highest efficiency of 24.58%, independently. The conversion efficiency of interdigitated back-contact solar cells has reached up to 26% by enhancing the optoelectrical properties for both-sides-contacted of the cells.