DOI QR코드

DOI QR Code

Passivation Properties of Phosphorus doped Amorphous Silicon Layers for Tunnel Oxide Carrier Selective Contact Solar Cell

터널 산화막 전하선택형 태양전지를 위한 인 도핑된 비정질 실리콘 박막의 패시베이션 특성 연구

  • Lee, Changhyun (Department of Materials Science and Engineering, SERC, Korea University) ;
  • Park, Hyunjung (Department of Materials Science and Engineering, SERC, Korea University) ;
  • Song, Hoyoung (Department of Materials Science and Engineering, SERC, Korea University) ;
  • Lee, Hyunju (Semiconductor laboratory, Toyota Technological Institute) ;
  • Ohshita, Yoshio (Semiconductor laboratory, Toyota Technological Institute) ;
  • Kang, Yoonmook (KU-KIST Green School Graduated School of Energy and Environment, Korea University) ;
  • Lee, Hae-Seok (KU-KIST Green School Graduated School of Energy and Environment, Korea University) ;
  • Kim, Donghwan (Department of Materials Science and Engineering, SERC, Korea University)
  • 이창현 (신소재공학과, 고려대학교) ;
  • 박현정 (신소재공학과, 고려대학교) ;
  • 송호영 (신소재공학과, 고려대학교) ;
  • 이현주 (반도체 연구소, 도요타 기술 연구소) ;
  • ;
  • 강윤묵 (KU-KIST 그린 스쿨 대학원, 고려대학교) ;
  • 이해석 (KU-KIST 그린 스쿨 대학원, 고려대학교) ;
  • 김동환 (신소재공학과, 고려대학교)
  • Received : 2019.11.11
  • Accepted : 2019.12.13
  • Published : 2019.12.31

Abstract

Recently, carrier-selective contact solar cells have attracted much interests because of its high efficiency with low recombination current density. In this study, we investigated the effect of phosphorus doped amorphous silicon layer's characteristics on the passivation properties of tunnel oxide passivated carrier-selective contact solar cells. We fabricated symmetric structure sample with poly-Si/SiOx/c-Si by deposition of phosphorus doped amorphous silicon layer on the silicon oxide with subsequent annealing and hydrogenation process. We varied deposition temperature, deposition thickness, and annealing conditions, and blistering, lifetime and passivation quality was evaluated. The result showed that blistering can be controlled by deposition temperature, and passivation quality can be improved by controlling annealing conditions. Finally, we achieved blistering-free electron carrier-selective contact with 730mV of i-Voc, and cell-like structure consisted of front boron emitter and rear passivated contact showed 682mV i-Voc.

Keywords

References

  1. Green, M. A., Hishikawa, Y., Dunlop, E. D., Levi, D. H., Hohl-Ebinger, J., Yoshita, M., Ho-Baillie, A. W. Y., "Solar cell efficiency tables (Version 53)", Prog. Photovolt., Vol. 27, No. 1, pp. 3-12, 2019. https://doi.org/10.1002/pip.3102
  2. Chen, Y., Chen, D., Liu, C., Wang, Z., Zou, Y., He, Y., Wang, Y., Yuan, L., Gong, J., Lin, W., Zhang, X., Yang, Y., Shen, H., Feng, Z., Altermatt, P. P., Verlinden, P. J., "Mass production of industrial tunnel oxide passivated contacts (i-TOPCon) silicon solar cells with average efficiency over 23% and modules over 345W", Prog. Photovolt., Vol. 27, No. 10, pp. 827-834. 2019 https://doi.org/10.1002/pip.3180
  3. Richter, A., Benick, J., Feldmann, F., Fell, A., Hermle, M., Glunz, S. W., "n-Type Si solar cells with passivating electron contact: Identifying sources for efficiency limitations by wafer thickness and resistivity variation", Sol. Energy Mater. Sol. Cells, Vol. 173, pp. 96-105, 2017. https://doi.org/10.1016/j.solmat.2017.05.042
  4. Morisset, A., Cabal, R., Grange, B., Marchat, C., Alvarez, J., Gueunier-Farret, M., Dubois, S., Kleider, J., "Improvement of the Conductivity and Surface Passivation Properties of Boron-doped Poly-silicon on Oxide", AIP Conference Proceedings, 1999, 040017, 2018
  5. Li, Q., Tao, K., Sun, Y., Jia, R., Wang, S.-M., Jin, Z., Liu, X.-Y., "Replacing the amorphous silicon thin layer with microcrystalline silicon thin layer in TOPCon solar cells", Solar Energy, Vol. 135, pp. 487-492, 2016. https://doi.org/10.1016/j.solener.2016.06.012
  6. Kim, H., Bae, S., Ji, K.-S., Kim, S. M., Yang, J. W., Lee, C. H., Lee, K. D., Kim, S., Kang, Y., Lee, H.-S., Kim, D., "Passivation properties of tunnel oxide layer in passivated contact silicon solar cells", Appl. Surf. Sci., Vol. 409, No. 1, pp. 140-148, 2017. https://doi.org/10.1016/j.apsusc.2017.02.195
  7. de Calheiros Velozo, A., Lavareda, G., Nunes de Carvalho, C., Amaral, A., "Thermal dehydrogenation of amorphous silicon deposited on c-Si: Effect of the substrate temperature during deposition", Physica. Status. Solidi. C 9, No. 10-11, pp. 2198-2202, 2012. https://doi.org/10.1002/pssc.201200194