• Title/Summary/Keyword: bootstrap resampling

Search Result 58, Processing Time 0.018 seconds

Improving the Performance of Threshold Bootstrap for Simulation Output Analysis (시뮬레이션 출력분석을 위한 임계값 부트스트랩의 성능개선)

  • Kim, Yun-Bae
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.23 no.4
    • /
    • pp.755-767
    • /
    • 1997
  • Analyzing autocorrelated data set is still an open problem. Developing on easy and efficient method for severe positive correlated data set, which is common in simulation output, is vital for the simulation society. Bootstrap is on easy and powerful tool for constructing non-parametric inferential procedures in modern statistical data analysis. Conventional bootstrap algorithm requires iid assumption in the original data set. Proper choice of resampling units for generating replicates has much to do with the structure of the original data set, iid data or autocorrelated. In this paper, a new bootstrap resampling scheme is proposed to analyze the autocorrelated data set : the Threshold Bootstrap. A thorough literature search of bootstrap method focusing on the case of autocorrelated data set is also provided. Theoretical foundations of Threshold Bootstrap is studied and compared with other leading bootstrap sampling techniques for autocorrelated data sets. The performance of TB is reported using M/M/1 queueing model, else the comparison of other resampling techniques of ARMA data set is also reported.

  • PDF

Evolution of Performance for Bootstrap EWMA Control Chart under Non-normal Process (비정규 공정하에 붓스트랩 EWMA관리도의 수행도 평가)

  • 이만웅;송서일
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.25 no.2
    • /
    • pp.50-56
    • /
    • 2002
  • In this study, we establish bootstrap control limits for EWMA chart by applying the bootstrap method, called resampling, which could not demand assumptions about pre-distribution when the process is skewed and/or the normality assumption is doubt. The results obtained in this study are summarized as follows : bootstrap EWMA control chart is developed for applying bootstrap method to EWMA chart, which is more sensitive to small shifts of process. With the purpose of eliminating a skewness of the resampling distribution, the bootstrap control limits are established by using a modified residual, and its performance is analyzed by ARL. It is shown that the bootstrap EWMA control chart developed in this study includes the properties of standard EWMA control chart that is sensitive to a small shift, and detects process in out of control more quickly than standard EWMA chart.

REGENERATIVE BOOTSTRAP FOR SIMULATION OUTPUT ANALYSIS

  • Kim, Yun-Bae
    • Proceedings of the Korea Society for Simulation Conference
    • /
    • 2001.05a
    • /
    • pp.169-169
    • /
    • 2001
  • With the aid of fast computing power, resampling techniques are being introduced for simulation output analysis (SOA). Autocorrelation among the output from discrete-event simulation prohibit the direct application of resampling schemes (Threshold bootstrap, Binary bootstrap, Stationary bootstrap, etc) extend its usage to time-series data such as simulation output. We present a new method for inference from a regenerative process, regenerative bootstrap, that equals or exceeds the performance of classical regenerative method and approximation regeneration techniques. Regenerative bootstrap saves computation time and overcomes the problem of scarce regeneration cycles. Computational results are provided using M/M/1 model.

  • PDF

Resampling Technique for Simulation Output Analysis

  • Kim, Yun-Bae
    • Journal of the Korea Society for Simulation
    • /
    • v.1 no.1
    • /
    • pp.31-36
    • /
    • 1992
  • To estimate the probability of long delay in a queuing system using discrete-event simulation is studied. We contrast the coverage, half-width, and stability of confidence intervals constructed using two methods: batch means and new resampling technique; binary bootstrap. The binary bootstrap is an extension of the conventional bootstrap that resamples runs rather than data values. Empirical comparisons using known results for the M/M/1 and D/M/10 queues show the binary bootstrap superior to batch means for this problem.

  • PDF

Resampling Technique for Simulation Output Analysis

  • Kim, Yun-Bae-
    • Proceedings of the Korea Society for Simulation Conference
    • /
    • 1992.10a
    • /
    • pp.13-13
    • /
    • 1992
  • To estimate the probability of long delay in a queuing system using discrete-event simulation studied. We contrast the coverage, half-width, and stability of confidence intervals constructed using two methods: batch means and new resampling technique; binary bootstrap. The binary bootstrap is an extension of the conventional bootstrap that resamples runs rather than data values. Empirical comparisons using known results for the M/M/1 and D/M/10 queues show the binary bootstrap superior to batch means for this problem.

  • PDF

Streamflow Generation by Boostrap Method and Skewness (Bootstrap 방법에 의한 하천유출량 모의와 왜곡도)

  • Kim, Byung-Sik;Kim, Hung-Soo;Seoh, Byung-Ha
    • Journal of Korea Water Resources Association
    • /
    • v.35 no.3
    • /
    • pp.275-284
    • /
    • 2002
  • In this study, a method of random resampling of residuals from stochastic models such as the Monte-Carlo model, the lag-one autoregressive model(AR(1)) and the periodic lag-one autoregressive model(PAR(1)), has been adopted to generate a large number of long traces of annual and monthly steamflows. Main advantage of this resampling scheme called the Bootstrap method is that it does not rely on the assumption of population distribution. The Bootstrap is a method for estimating the statistical distribution by resampling the data. When the data are a random sample from a distribution, the Bootstrap method can be implemented (among other ways) by sampling the data randomly with replacement. This procedure has been applied to the Yongdam site to check the performance of Bootstrap method for the streamflow generation. and then the statistics between the historical and generated streamflows have been computed and compared. It has been shown that both the conventional and Bootstrap methods for the generation reproduce fairly well the mean, standard deviation, and serial correlation, but the Bootstrap technique reproduces the skewness better than the conventional ones. Thus, it has been noted that the Bootstrap method might be more appropriate for the preservation of skewness.

Bootstrapping Regression Residuals

  • Imon, A.H.M. Rahmatullah;Ali, M. Masoom
    • Journal of the Korean Data and Information Science Society
    • /
    • v.16 no.3
    • /
    • pp.665-682
    • /
    • 2005
  • The sample reuse bootstrap technique has been successful to attract both applied and theoretical statisticians since its origination. In recent years a good deal of attention has been focused on the applications of bootstrap methods in regression analysis. It is easier but more accurate computation methods heavily depend on high-speed computers and warrant tough mathematical justification for their validity. It is now evident that the presence of multiple unusual observations could make a great deal of damage to the inferential procedure. We suspect that bootstrap methods may not be free from this problem. We at first present few examples in favour of our suspicion and propose a new method diagnostic-before-bootstrap method for regression purpose. The usefulness of our newly proposed method is investigated through few well-known examples and a Monte Carlo simulation under a variety of error and leverage structures.

  • PDF

Rainfall Frequency Analysis Using SIR Algorithm and Bootstrap Methods (극한강우를 고려한 SIR알고리즘과 Bootstrap을 활용한 강우빈도해석)

  • Moon, Ki Ho;Kyoung, Min Soo;Kim, Hung Soo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.4B
    • /
    • pp.367-377
    • /
    • 2010
  • In this study, we considered annual maximum rainfall data from 56 weather stations for rainfall frequency analysis using SIR(Sampling Important Resampling) algorithm and Bootstrap method. SIR algorithm is resampling method considering weight in extreme rainfall sample and Bootstrap method is resampling method without considering weight in rainfall sample. Therefore we can consider the difference between SIR and Bootstrap method may be due to the climate change. After the frequency analysis, we compared the results. Then we derived the results which the frequency based rainfall obtained using the data from SIR algorithm has the values of -10%~60% of the rainfall obtained using the data from Bootstrap method.

Frequency Analysis Using Bootstrap Method and SIR Algorithm for Prevention of Natural Disasters (풍수해 대응을 위한 Bootstrap방법과 SIR알고리즘 빈도해석 적용)

  • Kim, Yonsoo;Kim, Taegyun;Kim, Hung Soo;Noh, Huisung;Jang, Daewon
    • Journal of Wetlands Research
    • /
    • v.20 no.2
    • /
    • pp.105-115
    • /
    • 2018
  • The frequency analysis of hydrometeorological data is one of the most important factors in response to natural disaster damage, and design standards for a disaster prevention facilities. In case of frequency analysis of hydrometeorological data, it assumes that observation data have statistical stationarity, and a parametric method considering the parameter of probability distribution is applied. For a parametric method, it is necessary to sufficiently collect reliable data; however, snowfall observations are needed to compensate for insufficient data in Korea, because of reducing the number of days for snowfall observations and mean maximum daily snowfall depth due to climate change. In this study, we conducted the frequency analysis for snowfall using the Bootstrap method and SIR algorithm which are the resampling methods that can overcome the problems of insufficient data. For the 58 meteorological stations distributed evenly in Korea, the probability of snowfall depth was estimated by non-parametric frequency analysis using the maximum daily snowfall depth data. The results of frequency based snowfall depth show that most stations representing the rate of change were found to be consistent in both parametric and non-parametric frequency analysis. According to the results, observed data and Bootstrap method showed a difference of -19.2% to 3.9%, and the Bootstrap method and SIR(Sampling Importance Resampling) algorithm showed a difference of -7.7 to 137.8%. This study shows that the resampling methods can do the frequency analysis of the snowfall depth that has insufficient observed samples, which can be applied to interpretation of other natural disasters such as summer typhoons with seasonal characteristics.

Confidence Interval for Capability Process Indices by the Resampling Method (재표집방법에 의한 공정관리지수의 신뢰구간)

  • 남경현
    • Journal of Applied Reliability
    • /
    • v.1 no.1
    • /
    • pp.55-63
    • /
    • 2001
  • In this paper, we utilize the asymptotic variance of $C_{pk}$ to propose a two-sided confidence interval based on percentile-t bootstrap method. This confidence interval is compared with the ones based on the standard and percentile bootstrap methods. Simulation results show that percentile-t bootstrap method is preferred to other methods for constructing the confidence interval.l.

  • PDF