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Abstract

To estimate the probability of long delay in a queuing system using discrete-event

simulation is studied. We contrast the coverage, half-width, and stability of
confidence intervals constructed using two methods: batch means and new resampling
technique; binary bootstrap. The binary bootstrap is an extension of the conventional
bootstrap that resamples runs rather than data values. Empirical comparisons using
known results for the M/M/1 and D/M/10 queues show the binary bootstrap superior

to batch means for this problem.

(DISCRETE-EVENT SIMULATION; BOOTSTRAP; SIMULATION OUTPUT ANALYSIS:
BINARY TIME SERIES; BATCH MEANS)

1. Introduction

We introducs the “binary bootstrap”, a new approach to
inference about the probabiiey ot Jong delav i a queuing
svstem based on a single run of a diserete event simulation,
The binary  hootstrap has certain advantages  over the
conventional batch means method for constructing 4 conf
dence nrerval from @ single simulation run,

Most simulation analvses of queuing-type sysiems tocus on
the mean delay (or time in svstem). However, system
performance standards are often expressed in terms of tal

prababilities rather than first moments. For anszance, the 1.
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.. Bean (Iumpzmy’s service standard requires 85 percent of
incoming ealls 10 be answered m 20 seconds [167. Thus this
process 15 viewed as binary, taking the value 1 if the delay
exceeds 200 seconds and 0 otherwisel as the performance
cvaluanon requires esumation of a proportion, not a mena.

It successive customers’ defavs are independent, 1t would
be a simple matier to construct a confidence meerval for the
proportion with long delays, However, mference in queuing
svstems 15 complicated by avtocorrelaton,  which  usually
inflates the variance of the performance estimate in a wav
that 1« ditficuit to measure,

A standard approach o inference s the method of barch
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means [7, 14,

v o we o
single long run into “harches™ 1 if the harches are sufficenth

This approach divides the observations in a

farge, therr using classical methods, By discarding only a single
reansient perind, the method of barch means saves compu-
aoon. but rthere is sienificant additional offort mvolved in
tatnn, LUt rhere 15 significant additional cttort mvoived n
determining how large to make the batches, since the degree

sive hatch means must be vared

of correlation berween succe

ror vartous barch sizes,

For complex system, there s often more computation
involved in simulatiag 2 customer than in analvzing thae
customer's performance datum, As a sesult, we focus on
output analvsis using a single simulation run. Ultemaely, with
faster computers, 1t will become feasible t use a wngle run
stmulation to provide real-time or near reai-time advice on

svsfem m;}ﬂﬂg\’tmt‘ﬂf.
2. The Binary Bootstrap

The binary boowstrap was inspired by seminal work in three
fields: in statistics, Efron’s [4, 51 invention of the bootstrap
methad of inference’ in probability, Kedem's [9] analvsis of
bimarv tme seriest in simulation, Fishman and Moore's
8] artention to inference when simulation outputs are
binary.

Bricfly, the bootstrap is a “resampling” technique that
works by creating artificial replicates from an original data
ser. Given a set of iid data values, one creates artificial

replications by sampling the original  data values  with

. “ o
replacement. Given each “bootstrap replication,” one com-

putes a statistic of interest. Repeating this process generates
the sampling distribution of the statisue, A thorough survey
of bootstrap procedures for confidence intervals is provided
by Diticcio and Romano [6].

The conventional bootstrap method does not apply to time
series data, such as the output of a simulation of a queuing
system, because successive data values are not independent.
Thoms and Schucany [20] applied the bootstrap to time series
using an ARIMA with residual. Kunsch [13] and Liu and
Singh [15]

observations, Politis, Romano, and lai [17] generalized the

resampled  partially

overlapping  blocks  of

“blocks of blocks”

of observatons, Politis and Romano [18°

moving blocks procedure by resampling
developed the

et T thid wwrhisds pees los lacks whos
Sationart poosirp neihod which resamples blocks whose

starting points are uniformly disgrbuted on (1 ndand

whose fengths are weometricai

distributed, where nois the

rotal number of data points. Poling and Romane 19 also

developed a0 Tdiveular block-resampling ™ sechnique thar

amounts o weapping the dar around Inoa arce before
tocking, Our binary bootstrap differs from the moving block

”

boan rhat we der the dara divide arselt inro Thine

appro
of random length, consisting of runs of §'s and 1's,

Ueowve rnsight dnro the binary bootsirap, consider the
narure of serallyvcorrelated ome senes data, One way 1o
explain why conventional inference does not apply s thar the
serial correlarion changes the structure of runs i the data.
This is seen most easily when the data are clipped to binary
form, If successive binary dara values were iid {i.c., Bernoulli
trials ), then there would be geometric distributions tor the
lengths of runs of 0's {“0-runs” ) and runs of 1's (*1-runs”™),
With positive autocorrelation, run lengths increase, thereby
increasing the size of the stochastic excursions raken by the
series away from s mean, The increase in run lengths results
in a wider dispersion of sample realizations abour the mean
{“variance inflasion”™.) Conversely, with negative autocorre-
lation, runs that diverge from the mean tend ro be self-
reversing, so that large excursions away from the mean arce
rare. The decrease in run fength results o a narrower
distribution abour the mean (“variance detlation”™.) The
binary bootstrap maodifies the conventional bootstrap by
regarding runs, rather than individual data values, as the
sampling units, This preserves the correlation strucrare in the

boorstrap replicates.

The steps in the binary bootstrap are!
11 Clip the time series to binary form,
2. Break the binary data into alternating sequences of (-
runs and 1-runs,
31 a. Create B bootstrap replicates by alternately sampling
with replacement from the pools of O-runs and 1-

runs, Truncate the final run to insure that there are
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no more than the original o dem values i the
replicare. Our empirical work suggoses thar, as with
the conventional boorstrap, D00 replicues s an
appropriate number,

h. For each bootstrap replicate, compure the estimated
probability of long delay,

17 Anabvze the set of bootstrap estimates as if they were
indeperdent replications,
Fer o= Prob[long defav . To compute a 90 percens
confidence interval for @, simply sort the B bootserap
cstimates i identify (or interpolate) the Sthoand 95ch
percentiles, and use these values as the fower and upper limits

of the confidence interval, The lenpth of the interval,

Fstimated half-width IE OOy Sl B (1)
Where (et = (095" B)M value of the ordered {m%)
et = (095" B)" value of the ordered {m)¥),

is a dispersion functional of the empirical  distribution
tunction. This confidence interval procedure does not require
anv assumptions about the distribution of data values. such

as Normality or even symmetry,
3. Empirical Resuits

First, we present evidence that sampling alternately from
the pools of O-runs and 1-runs, as deseribed in Step 3a
above, is justified even when the data are known to have a
high positive autocorrelation, Second, we demonstrate thar
the binary bootstrap performs better than batch means in
drawing inferences from single runs simulating M/MJ/T and
DIM/10 queues,

Implicit in the binary bootstrap is the assumption that
successive run lengths are Independent, If this were not so,
we would have to modify Step 3a, which alternatelv samples
from the observed pools of O-runs and 1-runs without regard
to the value lzst sampled from the other pool, The assumption
has been verified for the M/M/1 case Kim [11].

tmpirical Comparson of Binare Boowstrap and Batch Means

T demonstrate the vabie of the birary  bootstrap in

simdlation outpur 4 e compared 1t o the mertod of
bateh means 10 sinualations of the MIN] quene, for waich
anabvtical resules are well known, and the DAAVTO gueue

A v I " i *

be abtained by the aumerical procedures,

where resuins can
Rleinreck 1127 Our primary concern was the actual coverage
achieved by nominal 90 nercent confidence intervals, A
sccondury concern was the half -width of correct confidence
mrervals, A pertarn ooncern wan the subiliy of the half-
widths,

We selected a difficalr case for analysis? with
high server udlizaton {#==9), so thar the delav
autocorrelanon  dissipated  very slowlv? oand  low
probability of exceeding the delay threshold (==,
1), so that excedences were infrequent events and
there were therefore few 1-runs, We took three
values tor run fengtht n=5,000, n=20,000, and
0=2100,000. In the M/M/1 model, we delered -he
first 3,000 castomers ro allow the system to reach
steady stare, In the D/MI10 model, we limired the
sample collection to the steady-state, Our analyses
were based on B0 trials at cach of the three run
lengrhs,

Fxhibit 1 compares the measured coverage of
nominal 90 percent contidence intervals for the
proportion of long dedavs in the M/M/1 model.
The binary bootstrap provided better coverage than
the method of hatch means? as expected, coverage
improved wirh run length for both methods, For
5,000,

adequate coverage: for n-20,000, only the binary

run  length n neither  method  vielded
bootstrap succeeded: for n=-100,000, both methods
provided adequate coverage, with a slight advantage
to the binary bootstrap, Since 100,000 observations
would be considered a short run for batch means

analysis, it is noteworthy that the binary bootstrap
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Exhibit 1: Coverage of Nominal 90% Confidence
Intervals for Probability of Long Delay in
M/M/1 Queue

o Estimated Coverage
Run Length* |

Batch Merans 7 Binary Bootstrap” ‘

5000 R L N | A

20,000 T b 8%+ 8%
100,000 8% + 9% (eSO R

SR - i

B Includes the first 3000 transiear observanions, whick were
delered.
BB =500 bootsreap replications

o

© Sampling uncertainties expressed as 90%  confidence antervals

tor woverage probabilinies, based on 50 simulinon ruos,

tions,
xhibit 2 the

confidence inrervals for n=100,000 customers in an

compares  the  half-widths  of
M/M/1 queue, at which run length both methods
provided valid intervals, The mean half-widths were
approximarely the same for both methods {paired
t=-1.49, df==48, p=.14; a Normal probabilitv plot
verified the Normality assumprtion underlving the
t-test ). Inspection of Iixhibir 2 also shows that the
of  the

shability half-widths  were  approximatcly

equal,

bixhibit 3

D/M/10 model. Again the binary bootstrap pro-

is the analog of Exhibit 1 for rhe

vided better coverage than batch means, For n=
5.000 customers, neither method vielded acceprable
for n=20,000 and n==100,000 customers,

both methods provided adequate coverage. For the

coverage.

n=100,000 customers, the binary bootstrap per-
formed slightly better than the batch means by all

three criterial coverage, accuracy, and stability,

Exhibit 3: Coverage of Nominal 90% Confidence
Intervals for Probability of Long Delay in
D/M/10 Queue

Estimated Coverage

Run Length e - B .
" Batch Means Binary Bootstrag?®
2000 BR7, + 11%P ) "Nr AU
200000 RE7 4 8 -
1001000 8%, + 87, W8, 4T
& B 300 boorstran replications
Posamnling uncertimnes espresed as 90% contidence iervals

for coveraee probabiines, based on 30 simuhinon runs,
Exhibit 4 is the analog of Exhibit 2 for the
D/M/10 model. Both methods succeeded in pro-

viding adequate coverage when run length n=

HALF-WIDTHS OF 90% CONFIDENCE INTERVALS
(BM=BATCH MEANS. BB=BINARY BOOTSTRAP)
035 j
E 030 e
=
Z 0250
Y
<
T 0200
015
BM BB
METHOD
Note: n=100,000 customers; p=.9, =1

Exhibit 2: Half-widths of Nominal 90% Co;\fidence
Intervais for M/M/1 queue

HALF-WIDTHS OF 90% CONFIDENCE INTERVALS
(BM=BATCH MEANS, BB=BINARY BOOTSTRAP)
.025 )

HALF-WIDTH
=3
&

.010

BM BB
METHOD

Note: n=100,000 customers; p=.9, r=1

Exhibit 4: Half-widths of Nominal 90% Confidence
Intervals for D/M/10 queue
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100,000 cus:omers. The mean half-widrhs were not
significanthy ditferent (paired =706, df==4Y, p==.
4870 a

Normality assumption underlving torese), Inspection

Normal  probabiliy plot ventied  the

of Fxhibit 4 shows that the half-widths produced
by the binary bootstrap were more stable than those

produced by barch means, The variance of half

o . . s
widrhe fram the binary bootstrap was 33% smaller

than those “rom the barch means,

4. Summary and Conclusions

We considered the problem of estmating  the
probability of long delay in a queaing svsrem using
a single rae from a discrere cevent simulation, We
comparcd  contidence intervals producsd by orhe
binary bootstrap and batch means for M/M/T and
1MIT0 Gueues,

The conventional bootsrrap resamples individual
data valucs and thereby destrovs dhe autocorrelation
structure 1 the data, In contrast, the  binary
hootstrap resamples runs and rhereby preserves the
autocorrelation,

Our main goal  was o compare  the  binan
baootstrap with the merhod of barch means, Using
data from o heavily-loaded MM queaing sysrem,
the hinary bootstrap produced  valic 90 pereent
contidence wrervals with run lengths as small as
20,000 customers, for  which the  barch  means
method faslcd o generare valid intervals, Tor run
100,000

wencrated valid inrervals with essentiallv equal mean

lengths ot customers,  both methods
half-widths and stability of halt widias, In the
IDINGTO case, for run lengrh n==20,000, borh
methods  penerated  valid intervals, with shghrly
betrer performance by the binary bootsrrap, For run
lengrhs of 100,000, both methods produced  valid
interval, bur the binary bootstrap was superior to
batch means in stability. Tor coverage and accuracy,

borh methads performed almost equally,

While compurer speed grows rapidly, it appears
thar the complexity of the systems we wish 1o
simulate keeps pace, so thar the problem  of
compurtational cost does not diminish, We advoared
single replicarton methods of output analvsis on the
basis of their compurational efficiency  relative to
the method of independent replications, In single-
run analvsis, the binary bootstrap has two compu-
tational advantages, First, the steps in the binary
bootstrap are mechanical and do nor require rhe
determinarion of optimal barch size involves trial
and crror and repeated caleulations of the tag onc
autocorrelarion berween barch means. Second, the
binary bootstrap algorithm s inherently suited 1o
paratich computation, smce multipie processors can
cach handle single <imulation runs simultancously,
This simpliciry and suitabiliny for parallel processing
add 1o the appeal ot the binury bootstrap,

There 1s much o do 1o follow up our inial
empirical results, First, one would like 1o explore
the binary bootstrap in other types of tme-series
mference, such as statisnieal process conrol, where
one might create p-charts that allow  for serial
correlation between failures, Scecond, one would fike
to extend the principles ot the binary bootstrap 1o
non-binary data, thus allowing for inference on

('UH\'L‘HH(‘-HL%I ]‘J(‘H‘()I'IH}XHCL‘ MICAsUres, .\'ll(‘h as means,
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