• Title/Summary/Keyword: bone substitutes

Search Result 119, Processing Time 0.032 seconds

Dental alloplastic bone substitutes currently available in Korea

  • Ku, Jeong-Kui;Hong, Inseok;Lee, Bu-Kyu;Yun, Pil-Young;Lee, Jeong Keun
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.45 no.2
    • /
    • pp.51-67
    • /
    • 2019
  • As dental implant surgery and bone grafts were widely operated in Korean dentist, many bone substitutes are commercially available, currently. For commercially used in Korea, all bone substitutes are firstly evaluated by the Ministry of Health and Welfare (MOHW) for safety and efficacy of the product. After being priced, classified, and registration by the Health Insurance Review and Assessment Service (HIRA), the post-application management is obligatory for the manufacturer (or representative importer) to receive a certificate of Good Manufacturing Practice by Ministry of Food and Drug Safety. Currently, bone substitutes are broadly classified into C group (bone union and fracture fixation), T group (human tissue), L group (general and dental material) and non-insurance material group in MOHW notification No. 2018-248. Among them, bone substitutes classified as dental materials (L7) are divided as xenograft and alloplastic bone graft. The purpose of this paper is to analyze alloplastic bone substitutes of 37 products in MOHW notification No. 2018-248 and to evaluate the reference level based on the ISI Web of Knowledge, PubMed, EMBASE (1980-2019), Cochrane Database, and Google Scholar using the criteria of registered or trademarked product name.

Histomorphometric evaluation of bone healing with natural calcium carbonate-derived bone substitutes in rat calvarial defect (백서두개골 결손부에서 천연물유래 탄산칼슘염 골대체의 골치유에 관한 조직계측학적 평가)

  • Lee, Chung-Ho;Jang, Je-Hee;Lee, Jae-Mok;Suh, Jo-Young;Park, Jin-Woo
    • Journal of Periodontal and Implant Science
    • /
    • v.38 no.1
    • /
    • pp.83-90
    • /
    • 2008
  • Purpose: This study investigated the osteoconductivity of natural calcium carbonate-derived bone substitutes, hen eggshell (ES), and compared with those of commercial bone substitutes. Materials and Methods: Osseous defects created in the rat calvaria were filled with particulated ES(ES-1), ES with calcium-deficient hydroxyapatite surface layer (ES-2), Biocoral(Inoteb, France), and Bio-Oss(Geistlich Pharma, Wolhusen, Switzerland). After 4 and 8 weeks of healing, histomorphometic analysis was performed to evaluate the amount of newly formed mineralized bone area (NB%). Results: Histologic and histomorphometric analysis showed new bone formation and direct bony contact with the grafted materials in all groups. At 4 weeks, Biocoral group showed greater NB% compared to Bio-Oss and ES-1 groups (P<0.05). At 8 weeks, Biocoral and ES-2 groups showed significantly greater NB% compared to Bio-Oss group (P<0.05). Conclusion: These results indicate that natural calcium carbonate-derived bone substitutes with microporous calcium-deficient hydroxyapatite surface layer may be an effective materials treating osseous defects.

Influence of biodegradable polymer membrane on new bone formation and biodegradation of biphasic bone substitutes: an animal mandibular defect model study

  • Ku, Jeong-Kui;Kim, Young-Kyun;Yun, Pil-Young
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.42
    • /
    • pp.34.1-34.7
    • /
    • 2020
  • Purpose: The purpose of this study was to evaluate the influence of biodegradable polycaprolactone membrane on new bone formation and the biodegradation of biphasic alloplastic bone substitutes using animal models. Materials and methods: In this study, bony defect was formed at the canine mandible of 8 mm in diameter, and the defects were filled with Osteon II. The experimental groups were covered with Osteoguide as barrier membrane, and the control groups were closed without membrane coverage. The proportion of new bone and residual bone graft material was measured histologically and histomorphometrically at postoperative 4 and 8 weeks. Results: At 4 weeks, the new bone proportion was similar between the groups. The proportion of remaining graft volume was 27.58 ± 6.26 and 20.01 ± 4.68% on control and experimental groups, respectively (P < 0.05). There was no significant difference between the two groups in new bone formation and the amount of residual bone graft material at 8 weeks. Conclusion: The biopolymer membrane contributes to early biodegradation of biphasic bone substitutes in the jaw defect but it does not affect the bone formation capacity of the bone graft.

Implant Survival Rates of Maxillary Sinus Augmentation: a Literature Review of Graft Materials (상악동 거상술시 이식재의 종류에 따른 임프란트의 예후와 성공률)

  • Lim, Hyoung-Sup;Kim, Su-Gwan;Oh, Ji-Su
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.32 no.4
    • /
    • pp.337-343
    • /
    • 2010
  • Purpose: By reviewing literature on the subject, we compared the survival rate of implants placed in various graft materials used for maxillary sinus augmentation. Materials and Methods: The search protocol used the Pubmed electronic database, with a time limit from 1998 to 2009. Keywords such as 'sinus lift,' 'sinus augmentation,' 'sinus floor elevation,' 'sinus graft,' 'bone graft,' 'implants,' 'oral implants,' and 'dental implants' were used, alone and in combination, to search the database. We selected articles and divided them into three groups by type of graft materials: Group 1. Autogenous bone group: autogenous bone alone; Group 2. Combined bone group: autogenous bone in combination with bone substitutes; and Group 3. Substitute group: bone substitutes alone or bone substitute combinations. Results: We selected 37 articles concerning a total of 2,257 patients and 7,282 implants; 417 implants failed. The total implant survival rate (ISR, %) was 94.3%. In Group 1, 761 patients and 2,644 implants were studied; 179 implants failed and the ISR was 93.2%. In Group 2, 583 patients and 1,931 implants were studied; 126 implants failed and the ISR was 93.5%. In Group 3, 823 patients and 2,707 implants were studied; 112 implants failed and the ISR was 95.9%. Conclusion: Implants inserted in grafts composed of bone substitutes alone or in grafts composed of autogenous bone in combination with bone substitutes may achieve survival rates better than those for implants using autogenous bone alone (P<0.05).

A comparative analysis of basic characteristics of several deproteinized bovine bone substitutes (수종의 탈단백 우골 이식재의 특성 비교 분석)

  • Yeo, Shin-Il;Park, Sung-Hwan;Noh, Woo-Chang;Park, Jin-Woo;Lee, Jae-Mok;Suh, Jo-Young
    • Journal of Periodontal and Implant Science
    • /
    • v.39 no.2
    • /
    • pp.149-156
    • /
    • 2009
  • Purpose: Deproteinized bovine bone substitutes are commonly used in dental regenerative surgery for treatment of alveolar defects. In this study, three different bovine bone minerals - OCS-B (NIBEC, Seoul, Korea), Bio-Oss (Geistlich - Pharma, Switzerland), Osteograft/N - 300 (OGN, Dentsply Friadent Ceramed. TN, USA) - were investigated to analyze the basic characteristics of commercially available bone substitutes. Methods: Their physicochemical properties were evaluated by scanning electron microscopy, energy dispersive X-ray spectrometer (EDS), surface area analysis, and Kjeldahl protein analysis. Cell proliferation and alkaline phosphatase (ALP) activity of human osteosarcoma cells on different bovine bone minerals were evaluated. Results: Three kinds of bone substitutes displayed different surface properties. Ca/P ratio of OCS - B shown to be lower than other two bovine bone minerals in EDS analysis. Bio-Oss had wider surface area and lower amount of residual protein than OCS - B and OGN. In addition Bio - Oss was proved to have lower cell proliferation and ALP activity due to lots of residual micro particles, compared with OCS - B and OGN. Conclusions: Based on the results of this study, three bovine bone minerals that produced by similar methods appear to have different property and characteristics. It is suggested that detailed studies and quality management is needed in operations for dental use and its biological effects on new bone formation.

Study on the development of polycaprolacton silica nanohybrid for bone substitutes (폴리카프로락톤 실리카 나노 복합체를 이용한 골이식대체재 개발에 관한 연구)

  • Jung, Keu-sik;Lim, Sung-Bin;Chung, Chin-Hyung;Hong, Ki-Seok;Kim, Jong-Yeo
    • Journal of Periodontal and Implant Science
    • /
    • v.34 no.2
    • /
    • pp.425-448
    • /
    • 2004
  • A bioactive and degradable poly(epsilon -caprolactone)/silica nanohybrid(PSH) was synthesized for the application as a bone substitute. PSH was manufactured by using silica and polycaprolacton. PSH was manufactured in some composition after low crystaline apatite had been formed in simulated body fluid and, was used this study. The safety of the PSH was established by test of acute, and subacute toxicity, sensitization cytotoxicity and sterility. In order to assess activity of osteoblast, the test for attaching osteoblast, proliferation test for osteoblast, differentiating gene expression test are performed in vitro. And bone substitutes were grafted in rabbit's calvarium, during 8 weeks for testing efficacy of bone substitutes. Degree of osteogenesis and absorption of substitutes were evaluated in microscopic level. In result, it was not appeared that acute and subacute toxicity, sensitization in intradermal induction phase, topical induction phase and challenge phase. It was shown that the test can not inhibit cell proliferation. adversely, it had some ability to accelerate cell proliferation. The result of sterility test described bacterial growth was not detected in most test tube. The attaching and proliferation test of osteoblast had good results. In the result of differentiating gene expression test for osteoblast, cbfa1 and, alkaline phosphatase, osteocalcin and GAPDH were detected with mRNA analysis. In the PSH bone formation test, ostgeoblastic activity would be different as material constitution but it had good new bone formation ability except group #218. futhermore, some material had been absorbed within 8 weeks. Above studies, PSH had bio-compatibility with human body, new bone formation ability and accelerate osteoblastic activity. So it would be the efficient bone substitute material with bio-active and biodegradable.

Fabrication and Properties of Bioactive Porous Ceramics for Bone Substitution (뼈 대체용 생체활성 다공질 세라믹스의 제조 및 특성)

  • Lee, Lak-Hyoung;Ha, Jung-Soo
    • Journal of the Korean Ceramic Society
    • /
    • v.45 no.10
    • /
    • pp.584-588
    • /
    • 2008
  • Porous hydroxyapatite(HA) and HA-coated porous $Al_2O_3$ possessing pore characteristics required for bone substitutes were prepared by a slurry foaming method combined with gelcasting. The HA coating was deposited by heating porous $Al_2O_3$ substrates in an aqueous solution containing $Ca^{2+}$ and ${PO_4}^{3-}$ ions at $65{\sim}95^{\circ}C$ under ambient pressure. The pore characteristic, microstructure, and compressive strength were investigated and compared for the two kinds of samples. The porosity of the samples was about 81% and 80% for HA and $Al_2O_3$, respectively with a highly interconnected network of spherical pores with size ranging from 50 to $250{\mu}m$. The porous $Al_2O_3$ sample showed much higher compressive strength(25 MPa) than the porous HA sample(10 MPa). Fairly dense and uniform HA coating(about $2{\mu}m$ thick) was deposited on the porous $Al_2O_3$ sample. Since the compressive strength of cancellous bone is $2{\sim}12$ MPa, both the porous HA and HA-coated porous $Al_2O_3$ samples could be successfully utilized as scaffolds for bone repair. Especially the latter is expected suitable for load bearing bone substitutes due to its excellent strength.

The effect of biphasic calcium phosphate and demineralized bone matrix on tooth eruption in mongrel dogs

  • Lee, Si Woo;Kim, Ji-Young;Hong, Ki Yong;Choi, Tae Hyun;Kim, Byung Jun;Kim, Sukwha
    • Archives of Craniofacial Surgery
    • /
    • v.22 no.5
    • /
    • pp.239-246
    • /
    • 2021
  • Background: Bone grafts can provide an optimal environment for permanent tooth to erupt and enhance the stability of the alveolar maxilla. Although autologous bone is an optimal source for osteogenesis, its inevitable donor site morbidity has led to active research on bone substitutes. This study was designed to evaluate the safety and feasibility of using biphasic calcium phosphate (BCP; Osteon) as a bone substitute in dogs. Methods: Bilateral third and fourth premolars of four 15-week-old mongrel dogs were used. All teeth were extracted except the third premolar of the right mandible, which was used as a control. After extraction of the premolars, each dog was administered BCP (Osteon), demineralized bone matrix (DBM; DBX), and no graft in the hollow sockets of the right fourth premolar, left fourth premolar, and left third premolar, respectively. Radiographs were taken at 2-week intervals to check for tooth eruption. After 8 weeks, each dog was sacrificed, and tooth and bone biopsies were performed to check for the presence of tooth and bone substitute particle remnants. Results: Four weeks after the operation, permanent tooth eruptions had started at all the extraction sites in each dog. Eight weeks after the operation, all teeth had normally erupted, and histological examination revealed BCP particles at the right fourth premolar. Conclusion: In all four dogs, no delay in the eruption of the teeth or shape disfigurement of permanent teeth was observed on gross inspection and radiologic evaluation. On histological examination, most of the BCP and DBM were replaced by new bone. Bone substitutes can be used as graft materials in patients with alveolar clefts.

Ridge augmentation in implant dentistry

  • Kim, Young-Kyun;Ku, Jeong-Kui
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.46 no.3
    • /
    • pp.211-217
    • /
    • 2020
  • In patients with insufficient bone height and width, the successful placement of dental implants is difficult with regards to maintaining an ideal pathway and avoiding important anatomical structures. Vertical and/or horizontal ridge augmentation may be necessary using various bone substitute materials and bone graft procedures. However, effective one-wall reconstruction has been challenging due to its poor blood supply and insufficient graft stability. In this paper, the authors summarize current evidence-based literature based on the author's clinical experience. Regarding bone substitutes, it is advantageous for clinicians to select the types of bone substitutes including autogenous bone. The most important consideration is to minimize complications through principle-based ridge augmentation surgery. Ridge augmentation should be decided with complete consent of the patients due to the possible disadvantages of surgery, complications, and unpredictable prognosis.

Growth Factor Releasing Porous Poly (${\varepsilon}-caprolactone$)-Chitosan Matrices for Enhanced Bone Regenerative Therapy

  • Im, Su-Yeon;Cho, Seon-Hye;Hwang, Jeong-Hyo;Lee, Seung-Jin
    • Archives of Pharmacal Research
    • /
    • v.26 no.1
    • /
    • pp.76-82
    • /
    • 2003
  • Drug releasing porous poly($\varepsilon$-caprolactone) (PCL)-chitosan matrices were fabricated for bone regenerative therapy. Porous matrices made of biodegradable polymers have been playing a crucial role as bone substitutes and as tissue-engineered scaffolds in bone regenerative therapy. The matrices provided mechanical support for the developing tissue and enhanced tissue formation by releasing active agent in controlled manner. Chitosan was employed to enhance hydrophilicity and biocompatibility of the PCL matrices. PDGF-BB was incorporated into PCL-chitosan matrices to induce enhanced bone regeneration efficacy. PCL-chitosan matrices retained a porous structure with a 100-200 $\mu$m pore diameter that was suitable for cellular migration and osteoid ingrowth. $NaHCO_3$ as a porogen was incorporated 5% ratio to polymer weight to form highly porous scaffolds. PDGF-BB was released from PCL-chitosan matrices maintaining therapeutic concentration for 4 week. High osteoblasts attachment level and proliferation was observed from PCL-chitosan matrices. Scanning electron microscopic examination indicated that cultured osteoblasts showed round form and spread pseudopods after 1 day and showed broad cytoplasmic extension after 14 days. PCL-chitosan matrices promoted bone regeneration and PDGF-BB loaded matrices obtained enhanced bone formation in rat calvarial defect. These results suggested that the PDGF-BB releasing PCL-chitosan porous matrices may be potentially used as tissue engineering scaffolds or bone substitutes with high bone regenerative efficacy.