DOI QR코드

DOI QR Code

Influence of biodegradable polymer membrane on new bone formation and biodegradation of biphasic bone substitutes: an animal mandibular defect model study

  • Ku, Jeong-Kui (Department of Oral and Maxillofacial Surgery, Section of Dentistry, Section of Dentistry, Armed Forces Capital Dental Hospital, Armed Forces Medical Command) ;
  • Kim, Young-Kyun (Department of Oral and Maxillofacial Surgery, Section of Dentistry, Seoul National University Bundang Hospital) ;
  • Yun, Pil-Young (Department of Oral and Maxillofacial Surgery, Section of Dentistry, Seoul National University Bundang Hospital)
  • Received : 2020.06.21
  • Accepted : 2020.10.05
  • Published : 2020.12.31

Abstract

Purpose: The purpose of this study was to evaluate the influence of biodegradable polycaprolactone membrane on new bone formation and the biodegradation of biphasic alloplastic bone substitutes using animal models. Materials and methods: In this study, bony defect was formed at the canine mandible of 8 mm in diameter, and the defects were filled with Osteon II. The experimental groups were covered with Osteoguide as barrier membrane, and the control groups were closed without membrane coverage. The proportion of new bone and residual bone graft material was measured histologically and histomorphometrically at postoperative 4 and 8 weeks. Results: At 4 weeks, the new bone proportion was similar between the groups. The proportion of remaining graft volume was 27.58 ± 6.26 and 20.01 ± 4.68% on control and experimental groups, respectively (P < 0.05). There was no significant difference between the two groups in new bone formation and the amount of residual bone graft material at 8 weeks. Conclusion: The biopolymer membrane contributes to early biodegradation of biphasic bone substitutes in the jaw defect but it does not affect the bone formation capacity of the bone graft.

Keywords

References

  1. Lim SY, Yeo DS, Lee HJ, Kim HK, An KM, Sohn DS (2006) A clinicostatical study of jaw cyst between 2001~2005. J Korean Assoc Oral Maxillofac Surg 32(6):588-593
  2. Chacko R, Kumar S, Arvind PA (2015) Spontaneous bone regeneration after enucleation of large jaw cysts: a digital radiographic analysis of 44 consecutive cases. J Clin Diagn Res 9(9):Zc84-Zc89
  3. Ihan Hren N, Miljavec M (2008) Spontaneous bone healing of the large bone defects in the mandible. Int J Oral Maxillofac Surg 37(12):1111-1116
  4. Bertoldi C, Zaffe D, Consolo U (2008) Polylactide/polyglycolide copolymer in bone defect healing in humans. Biomaterials. 29(12):1817-1823
  5. Kim YK, Lee JY, Kim SG, Lim SC (2013) Guided bone regeneration using demineralized allogenic bone matrix with calcium sulfate: case series. J Adv Prosthodont 5(2):167-171
  6. Mitchell R (1992) An evaluation of bone healing in cavities in the jaws implanted with a collagen matrix. Br J Oral Maxillofac Surg 30(3):180-182
  7. Schepers EJ, Ducheyne P (1997) Bioactive glass particles of narrow size range for the treatment of oral bone defects: a 1-24 month experiment with several materials and particle sizes and size ranges. J Oral Rehabil 24(3):171-181
  8. Forssell K, Forssell H, Kahnberg KE (1988) Recurrence of keratocysts: a longterm follow-up study. Int J Oral Maxillofac Surg 17(1):25-28
  9. Motamedi M, Talesh K (2005) Management of extensive dentigerous cysts. British. Dental J 198(4):203
  10. Huang IY, Lai ST, Chen CH, Chen CM, Wu CW, Shen YH (2007) Surgical management of ameloblastoma in children. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 104(4):478-485
  11. Jang K, Lee JH, Oh SH, Ham BD, Chung SM, Lee JK, Ku JK (2020) Bone graft materials for current implant dentistry. J Dental Implant Res 39(1):1-10
  12. Gauthier O, Bouler JM, Aguado E, Pilet P, Daculsi G (1998) Macroporous biphasic calcium phosphate ceramics: influence of macropore diameter and macroporosity percentage on bone ingrowth. Biomaterials. 19(1-3):133-139
  13. Ettl T, Gosau M, Sader R, Reichert TE (2012) Jaw cysts - filling or no filling after enucleation? A review. J Craniomaxillofac Surg 40(6):485-493
  14. Dahlin C, Gottlow J, Linde A, Nyman S (1990) Healing of maxillary and mandibular bone defects using a membrane technique. An experimental study in monkeys. Scand J Plast Reconstr Surg Hand Surg 24(1):13-19
  15. Santamaria J, Garcia AM, de Vicente JC, Landa S, Lopez-Arranz JS (1998) Bone regeneration after radicular cyst removal with and without guided bone regeneration. Int J Oral Maxillofac Surg 27(2):118-120
  16. Park SA, Lee SH, Kim WD (2011) Fabrication of porous polycaprolactone/hydroxyapatite (PCL/HA) blend scaffolds using a 3D plotting system for bone tissue engineering. Bioprocess Biosyst Eng 34(4):505-513
  17. Kim JY, Cho DW (2009) Blended PCL/PLGA scaffold fabrication using multi-head deposition system. Microelectron Eng 86(4):1447-1450
  18. Hjorting-Hansen E, Andreasen JO (1971) Incomplete bone healing of experimental cavities in dog mandibles. Br J Oral Surg 9(1):33-40
  19. Barboza EP, Duarte MEL, Geolas L, Sorensen RG, Riedel GE, Wikesjo UME (2000) Ridge augmentation following implantation of recombinant human bone morphogenetic protein-2 in the dog. J Periodontol 71(3):488-496
  20. Kim YK, Yun PY, Lim SC, Kim SG, Lee HJ, Ong JL (2008) Clinical evaluations of OSTEON as a new alloplastic material in sinus bone grafting and its effect on bone healing. J Biomed Mater Res B Appl Biomater 86(1):270-277
  21. Kondo N, Ogose A, Tokunaga K, Umezu H, Arai K, Kudo N, Hoshino M, Inoue H, Irie H, Kuroda K, Mera H, Endo N (2006) Osteoinduction with highly purified beta-tricalcium phosphate in dog dorsal muscles and the proliferation of osteoclasts before heterotopic bone formation. Biomaterials. 27(25):4419-4427
  22. Chazono M, Tanaka T, Komaki H, Fujii K (2004) Bone formation and bioresorption after implantation of injectable beta-tricalcium phosphate granules-hyaluronate complex in rabbit bone defects. J Biomed Mater Res A 70(4):542-549
  23. Jensen SS, Broggini N, Hjorting-Hansen E, Schenk R, Buser D (2006) Bone healing and graft resorption of autograft, anorganic bovine bone and beta-tricalcium phosphate. A histologic and histomorphometric study in the mandibles of minipigs. Clin Oral Implants Res 17(3):237-243
  24. Jensen SS, Bornstein MM, Dard M, Bosshardt DD, Buser D (2009) Comparative study of biphasic calcium phosphates with different HA/TCP ratios in mandibular bone defects. A long-term histomorphometric study in minipigs. J Biomed Mater Res B Appl Biomater 90(1):171-181
  25. Buser D, Hoffmann B, Bernard JP, Lussi A, Mettler D, Schenk RK (1998) Evaluation of filling materials in membrane--protected bone defects. A comparative histomorphometric study in the mandible of miniature pigs. Clin Oral Implants Res 9(3):137-150
  26. Horch HH, Sader R, Pautke C, Neff A, Deppe H, Kolk A (2006) Synthetic, pure-phase beta-tricalcium phosphate ceramic granules (Cerasorb< sup>®) for bone regeneration in the reconstructive surgery of the jaws. Int J Oral Maxillofac Surg 35(8):708-713
  27. Zwahlen RA, Cheung LK, Zheng LW, Chow RL, Li T, Schuknecht B, Gratz KW, Weber FE (2009) Comparison of two resorbable membrane systems in bone regeneration after removal of wisdom teeth: a randomizedcontrolled clinical pilot study. Clin Oral Implants Res 20(10):1084-1091
  28. Kitayama S, Wong LO, Ma L, Hao J, Kasugai S, Lang NP, Mattheos N (2016) Regeneration of rabbit calvarial defects using biphasic calcium phosphate and a strontium hydroxyapatite-containing collagen membrane. Clin Oral Implants Res 27(12):e206-ee14
  29. Hong I, Khalid AW, Pae HC, Cha JK, Lee JS, Paik JW, Jung UW, Choi SH (2019) Distinctive bone regeneration of calvarial defects using biphasic calcium phosphate supplemented ultraviolet-crosslinked collagen membrane. J Periodontal Implant Sci 50(1):14-27
  30. Hammerle CH, Schmid J, Lang NP, Olah AJ (1995) Temporal dynamics of healing in rabbit cranial defects using guided bone regeneration. J Oral Maxillofac Surg 53(2):167-174
  31. Liu J, Kerns DG (2014) Mechanisms of guided bone regeneration: a review. Open Dent J 8:56-65
  32. Omar O, Elgali I, Dahlin C, Thomsen P (2019) Barrier membranes: more than the barrier effect? J Clin Periodontol 46(S21):103-123
  33. El-Rashidy AA, Roether JA, Harhaus L, Kneser U, Boccaccini AR (2017) Regenerating bone with bioactive glass scaffolds: a review of in vivo studies in bone defect models. Acta Biomater 62:1-28
  34. Horowitz I, Bodner L (1989) Use of xenograft bone with aspirated bone marrow for treatment of cystic defect of the jaws. Head Neck 11(6):516-523
  35. Eskan MA, Girouard ME, Morton D, Greenwell H (2017) The effect of membrane exposure on lateral ridge augmentation: a case-controlled study. Int J Implant Dent 3:26
  36. Kodama T, Minabe M, Hori T, Watanabe Y (1989) The effect of various concentrations of collagen barrier on periodontal wound healing. J Periodontol 60(4):205-210
  37. Blecher JC, Lemperle SM, Howaldt HP (2000) Osteoplasty of extensive jaw defects by protected bone regeneration using large pore resorbable implant. Mund Kiefer Gesichtschir 4(Suppl 2):S496-S500
  38. Ma JL, Pan JL, Tan BS, Cui FZ (2009) Determination of critical size defect of minipig mandible. J Tissue Eng Regen Med 3(8):615-622

Cited by

  1. Synthetic Material for Bone, Periodontal, and Dental Tissue Regeneration: Where Are We Now, and Where Are We Heading Next? vol.14, pp.20, 2021, https://doi.org/10.3390/ma14206123
  2. Enhanced Bone Regeneration in Variable-Type Biphasic Ceramic Phosphate Scaffolds Using rhBMP-2 vol.22, pp.21, 2020, https://doi.org/10.3390/ijms222111485
  3. Bone Regeneration of a 3D-Printed Alloplastic and Particulate Xenogenic Graft with rhBMP-2 vol.22, pp.22, 2020, https://doi.org/10.3390/ijms222212518