• Title/Summary/Keyword: bone strength

Search Result 499, Processing Time 0.027 seconds

A Finite Element Simulation of Cancellous Bone Remodeling Based on Volumetric Strain (스폰지 뼈의 Remodeling 예측을 위한 체적 변형률을 이용한 유한요소 알고리즘)

  • Kim, Young;Vanderby, Ray
    • Journal of Biomedical Engineering Research
    • /
    • v.21 no.4
    • /
    • pp.373-384
    • /
    • 2000
  • The goal of this paper is to develop a computational method to predict cancellous bone density distributions based upon continuum levels of volumetric strain. Volumetric strain is defined as the summation of normal strains, excluding shear strains, within an elastic range of loadings. Volumetric strain at a particular location in a cancellous structure changes with changes of the boundary conditions (prescribed displacements, tractions, and pressure). This change in the volumetric strain is postulated to predict the adaptive change in the bone apparent density. This bone remodeling theory based on volumetric strain is then used with the finite element method to compute the apparent density distribution for cancellous bone in both lumbar spine and proximal femur using an iterative algorithm, considering the dead zone of strain stimuli. The apparent density distribution of cancellous bone predicted by this method has the same pattern as experimental data reported in the literature (Wolff 1892, Keller et al. 1989, Cody et al. 1992). The resulting bone apparent density distributions predict Young's modulus and strength distributions throughout cancellous bone in agreement with the literature (Keller et al. 1989, Carter and Hayes 1977). The method was convergent and sensitive to changes in boundary conditions. Therefore, the computational algorithm of the present study appears to be a useful approach to predict the apparent density distribution of cancellous bone (i.e. a numerical approximation for Wolff's Law)

  • PDF

Are critical size bone notch defects possible in the rabbit mandible?

  • Carlisle, Patricia L.;Guda, Teja;Silliman, David T.;Hale, Robert G.;Baer, Pamela R. Brown
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.45 no.2
    • /
    • pp.97-107
    • /
    • 2019
  • Objectives: Small animal maxillofacial models, such as non-segmental critical size defects (CSDs) in the rabbit mandible, need to be standardized for use as preclinical models of bone regeneration to mimic clinical conditions such as maxillofacial trauma. The objective of this study is the establishment of a mechanically competent CSD model in the rabbit mandible to allow standardized evaluation of bone regeneration therapies. Materials and Methods: Three sizes of bony defect were generated in the mandibular body of rabbit hemi-mandibles: $12mm{\times}5mm$, $12mm{\times}8mm$, and $15mm{\times}10mm$. The hemi-mandibles were tested to failure in 3-point flexure. The $12mm{\times}5mm$ defect was then chosen for the defect size created in the mandibles of 26 rabbits with or without cautery of the defect margins and bone regeneration was assessed after 6 and 12 weeks. Regenerated bone density and volume were evaluated using radiography, micro-computed tomography, and histology. Results: Flexural strength of the $12mm{\times}5mm$ defect was similar to its contralateral; whereas the $12mm{\times}8mm$ and $15mm{\times}10mm$ groups carried significantly less load than their respective contralaterals (P<0.05). This demonstrated that the $12mm{\times}5mm$ defect did not significantly compromise mandibular mechanical integrity. Significantly less (P<0.05) bone was regenerated at 6 weeks in cauterized defect margins compared to controls without cautery. After 12 weeks, the bone volume of the group with cautery increased to that of the control without cautery after 6 weeks. Conclusion: An empty defect size of $12mm{\times}5mm$ in the rabbit mandibular model maintains sufficient mechanical stability to not require additional stabilization. However, this defect size allows for bone regeneration across the defect. Cautery of the defect only delays regeneration by 6 weeks suggesting that the performance of bone graft materials in mandibular defects of this size should be considered with caution.

The Effect of Combined Estrogen/Calcium Therapy on Bone Metabolism in Ovariectomized Rats -III. A Study on Skeletal Composition in Ovariectomized Rats- (에스트로겐/칼슘 혼합요법이 난소절제 쥐의 골대사에 미치는 영향 -III. 골격 구성성분에 미치는 영향-)

  • Lee, Kyung-Hwa;Lee, Sung-Sug;Choi, In-Seon;Oh, Seung-Ho
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.26 no.2
    • /
    • pp.334-343
    • /
    • 1997
  • This study was performed to elucidate the effects of dietary calcium-salt, estrogen-treatment, and estrogen/calcium treatment on bone metabolism. Ovariectomized rats were used as an animal model. Female Sprague-Dawley rats with a body weight of $250{\sim}280g$ underwent ovariectomy or sham-operation. The ovariectomized rats were divided into 9 different experimental groups including saline-treated group, estrogen-treated group, high calcium salt-treated group, and estrogen/calcium treated groups, and fed the experimental diet for 6 weeks. The mineral content, weight, length, strength and density in femur and scapula of the animals were determined. The results of the experiment are as follows: there were no difference in weight of wet bone, density, length, strength and content of ash in right femur between ovariectomized rat and sham-operation. When the weight of bones was expressed as bone gram per body weight, it was significantly lower in ovariectomized rat than sham-operation. Estrogen and estrogen/calcium in ovariectomized rats resulted in increased weight of wet bone. Estrogen with its gradual reduction in ovariectomized rats showed the lowest values in strength, content of ash, content of calcium and content of phosphorus among the groups. There were no differences in weight of wet hone, density, content of ash, content of calcium and content of phosphorus in right scapula between ovariectomized rat and sham-operation. In addition skeletal composition was not changed by ovariectomy. Estrogen and estrogen/calcium in ovariectomized rats resulted in decreased skeletal composition however, estrogen with its gradual reduction did not caused the skeletal composition change. Moreover, the gradual reduction of estrogen had a preventive effect on bone loss when the treatment was combined with calcium intensification.

  • PDF

Tensile Properties of Hybrid Fiber-Reinforced Reactive Powder Concrete After Exposure to Elevated Temperatures

  • Li, Haiyan;Liu, Gang
    • International Journal of Concrete Structures and Materials
    • /
    • v.10 no.1
    • /
    • pp.29-37
    • /
    • 2016
  • The paper presents a research project on the tensile properties of RPC mixed with both steel and polypropylene fibers after exposure to $20-900^{\circ}C$. The direct and the indirect tensile strength (in bending) were measured through tensile experiment on dog-bone specimens and bending experiment on $40{\times}40{\times}160mm$ prisms. RPC microstructure was analyzed using scanning electron microscope. The results indicate that, steel fibers can significantly improve the tensile performance of hybrid fiber-reinforced RPC, whereas polypropylene fibers have no obvious effect on the tensile performance. With increasing temperature, the flexural and axial tensile strength of hybrid fiber-reinforced RPC substantially decrease linearly, which attributes to the deteriorating microstructure. Based on the experimental results, equations are established to express the decay of the flexural and tensile strength with increasing temperature.

Effects of Different Timing of Implant Insertion on Osseointegration After Tooth Extraction;Histomorphometric and Biomechanical Studies (발치후 임프란트 매식 시기에 따른 골유착에 관한 연구;조직형태계측학적 및 생역학적 연구)

  • Oh, Hee-Kyun;Ryu, Sun-Youl
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.16 no.4
    • /
    • pp.477-497
    • /
    • 1994
  • The purpose of this study was to investigate the effect of timing of implant insertion on osseointegration after tooth extraction. Fifteen mongrel dogs, weighing 15kg or more, were used. The lower right 1st, 2nd, 3rd, 4th premolars and 1st molar were extracted under general anesthesia. Implants were inserted at 2, 4, and 8 weeks after extraction of the teeth, being designated as 2-, 4-, and 8-week groups, respectively. Results obtained were as follows. 1. Macroscopically there was neither an infection at the implant site nor an exposure of the implant. 2. Histologically the surrounding bone of the implant was less mature in the 2-week group than in the 4- and 8-week groups. 3. The implant-bone contact ranged from 75 to 82%, with no significant differences among the groups. No increase in the implant-bone contact was found with increasing healing periods from 4 to 12 weeks after implant insertions. 4. The average depth (0.64mm) of the fibrous connective tissue ingrowth in the 2-week group was slightly deeper than those in the 4- (0.51mm) and 8-week (0.53mm) groups at 12 weeks after implant insertion. 5. the implant-bone interfacial bond strengths were 73.05 kgf in the 2-week group, 69.71 kgf in the 4-week group and 73.76 kgf in the 8-week group. No significant difference was noted in pullout force among the groups. The degree of confidence of interfacial bone strength was highest in the 8-week group, followed by the 4- and 2-week groups. These results indicate that at least 4 weeks of healing period will be required before implant is to be inserted following tooth extraction.

  • PDF

Prediction of Cement Volume for Vertebroplasty Based on Imaging and Biomechanical Results

  • Lee, Sung-Jae;Tack, Gye-Rae;Lee, Seung-Yong;Jun, Bong-Jae;Lim, Do-Hyung;Shin, Jung-Woog;Kim, Jeong-Koo;Shin, Kyu-Chul
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.7
    • /
    • pp.1041-1050
    • /
    • 2001
  • Control of bone cement volume (PMMA) may be critical for preventing complications in vertebroplasty, the percutaneous injection of PMMA into vertebra. The purpose of this study was to predict the optimal volume of PMMA injection based on CT images. For this, correlation between PMMA volume and textural features of CT images was examined before and after surgery to evaluate the appropriate PMMA amount. The gray level run length analysis was used to determine the textural features of the trabecular bone. Extimation of PMMA volume was done using 3D visualization with semi-automatic segmentation on postoperative CT images. Then, finite element (FE) models were constructed based on the CT image data of patients and PMMA volume. Appropriate material properties for the trabecular bone were assigned by converting BMD to elastic modulus. Structural reinforcement due to the changes in PMMA volume and BMD was assessed in terms of axial displacement of the superior endplate. A strong correlation was found between the injected PMMA volume and the area of the intertrabecular space and that of trabecular bone calculated from the CT images (r=0.90 and -0.90, respectively). FE results suggested that vertebroplasty could effectively reinforce the osteoporotic vertebra regardless of BMD or PMMA volume. Effectiveness of additional PMMA injection tended to decrease. For patients with BMD well lower than 50mg/ml, injection of up to 30% volume of the vertebral body is recommended. However, less than 30% is recommended otherwise to avoid any complications from excessive PMMA because the strength has already reached the normal level.

  • PDF

Effect of Different Housing System on the Performance, Bone Mineral Density and Yolk Fatty Acid Composition in Laying Hen

  • Hassan, Md. Rakibul;Sultana, Shabiha;Choe, Ho Sung;Ryu, Kyeong Seon
    • Korean Journal of Poultry Science
    • /
    • v.39 no.4
    • /
    • pp.261-267
    • /
    • 2012
  • Different housing systems have considerable influence on performance in poultry production. Therefore, the present study was undertaken to investigate the impact of different housing systems on the performance, bone mineral density and egg yolk fatty acid composition in laying hen. Hy-line brown pullets (n=450) of 12 weeks age were randomly divided into 3 housing systems with 6 replicates of 25 birds in each room. A diet with 2,750 kcal/kg ME and 16.5% CP was assigned to all birds. The pullets provided free access to feed and water. Significantly (P<0.05) higher values for egg production, egg mass and feed conversion efficiency were found in battery cages, however egg weight, egg shell color and breaking strength was remarkably (P<0.05) higher in floor system. The albumin height and Haugh unit were significantly higher (P<0.05) in battery cages which was statistically similar to aviary housing system. The egg yolk fatty acids concentration of linoleic acid and linolenic acids were significantly higher in aviary and in floor system, respectively, however both values were lower in battery cages. Saturated and unsaturated fatty acid content (%) in egg yolk did not influence by any housing systems. Bone mineral density was significantly higher (P<0.05) in floor and aviary housing system than that of battery cage system. It was concluded that in battery cages the egg production and composition maximized, however higher bone mineral density and yolk fatty acids content can be improved in the laying hen reared on floor and aviary housing systems.

Use of Vitamin D3 and Its Metabolites in Broiler Chicken Feed on Performance, Bone Parameters and Meat Quality

  • Garcia, Ana Flavia Quiles Marques;Murakami, Alice Eiko;Do Amaral Duarte, Cristiane Regina;Ospina Rojas, Ivan Camilo;Picoli, Karla Paola;Puzotti, Maira Mangili
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.26 no.3
    • /
    • pp.408-415
    • /
    • 2013
  • The objective of this experiment was to assess the use of different vitamin D metabolites in the feed of broiler chickens and the effects of the metabolites on performance, bone parameters and meat quality. A total of 952 one-day-old male broiler chicks were distributed in a completely randomised design, with four treatments, seven replicates and 34 birds per experimental unit. The treatments consisted of four different sources of vitamin D included in the diet, $D_3$, $25(OH)D_3$, $1,25(OH)_2D_3$, and $1{\alpha}(OH)D_3$, providing 2000 and 1600 IU of vitamin D in the starter (1 to 21 d) and growth phases (22 to 42 d), respectively. Mean weight, feed:gain and weight gain throughout the rearing period were less in animals fed $1{\alpha}(OH)D_3$ when compared with the other treatments (p<0.05). No significant differences were noted among the treatments (p>0.05) for various bone parameters. Meat colour differed among the treatments (p>0.05). All of the metabolites used in the diets, with the exception of $1{\alpha}(OH)D_3$, can be used for broiler chickens without problems for performance and bone quality, however, some aspects of meat quality were affected.

The effect of bacterial cellulose membrane compared with collagen membrane on guided bone regeneration

  • Lee, So-Hyoun;Lim, Youn-Mook;Jeong, Sung In;An, Sung-Jun;Kang, Seong-Soo;Jeong, Chang-Mo;Huh, Jung-Bo
    • The Journal of Advanced Prosthodontics
    • /
    • v.7 no.6
    • /
    • pp.484-495
    • /
    • 2015
  • PURPOSE. This study was to evaluate the effects of bacterial cellulose (BC) membranes as a barrier membrane on guided bone regeneration (GBR) in comparison with those of the resorbable collagen membranes. MATERIALS AND METHODS. BC membranes were fabricated using biomimetic technology. Surface properties were analyzed, Mechanical properties were measured, in vitro cell proliferation test were performed with NIH3T3 cells and in vivo study were performed with rat calvarial defect and histomorphometric analysis was done. The Mann-Whitney U test and the Wilcoxon signed rank test was used (${\alpha}<.05$). RESULTS. BC membrane showed significantly higher mechanical properties such as wet tensile strength than collagen membrane and represented a three-dimensional multilayered structure cross-linked by nano-fibers with 60 % porosity. In vitro study, cell adhesion and proliferation were observed on BC membrane. However, morphology of the cells was found to be less differentiated, and the cell proliferation rate was lower than those of the cells on collagen membrane. In vivo study, the grafted BC membrane did not induce inflammatory response, and maintained adequate space for bone regeneration. An amount of new bone formation in defect region loaded with BC membrane was significantly similar to that of collagen membrane application. CONCLUSION. BC membrane has potential to be used as a barrier membrane, and efficacy of the membrane on GBR is comparable to that of collagen membrane.

Clinical Safety Evaluation of Interbody Fusion Cage Based on Tunable Elastic Modulus of the Cellular Structure According to the Geometrical Variables (형상학적 변수에 따른 다공성 구조의 가변탄성계수를 기반으로 한 추간체유합보형재의 임상적 안전성 평가)

  • Kim, SeongJin;Lee, YongKyung;Choi, Jaehyuck;Hong, YoungKi;Kim, JungSung
    • Journal of Biomedical Engineering Research
    • /
    • v.40 no.5
    • /
    • pp.158-164
    • /
    • 2019
  • The interbody fusion cage used to replace the degenerative intervertebral disc is largely composed of titanium-based biomaterials and biopolymer materials such as PEEK. Titanium is characterized by osseointergration and biocompatibility, but it is posed that the phenomenon such as subsidence can occur due to high elastic modulus versus bone. On the other hand, PEEK can control the elastic modulus in a similar to bone, but there is a problem that the osseointegration is limited. The purpose of this study was to implement titanium material's stiffness similar to that of bone by applying cellular structure, which is able to change the stiffness. For this purpose, the cellular structure A (BD, Body Diagonal Shape) and structure B (QP, Quadral Pod Shape) with porosity of 50%, 60%, 70% were proposed and the reinforcement structure was suggested for efficient strength reinforcement and the stiffness of each model was evaluated. As a result, the stiffness was reduced by 69~93% compared with Ti6Al4V ELI material, and the stiffness most similar to cortical bone is calculated with the deviation of about 12% in the BD model with 60% porosity. In this study, the interbody fusion cage made of Ti6Al4V ELI material with stiffness similar to cortical bone was implementing by applying cellular structure. Through this, it is considered that the limitation of the metal biomaterial by the high elastic modulus may be alleviated.