• 제목/요약/키워드: bone marrow-derived mesenchymal stem cells (BM-MSCs)

검색결과 24건 처리시간 0.025초

Comparative characteristic study from bone marrow-derived mesenchymal stem cells

  • Purwaningrum, Medania;Jamilah, Nabila Syarifah;Purbantoro, Steven Dwi;Sawangmake, Chenphop;Nantavisai, Sirirat
    • Journal of Veterinary Science
    • /
    • 제22권6호
    • /
    • pp.74.1-74.13
    • /
    • 2021
  • Tissue engineering has been extensively investigated and proffered to be a potential platform for novel tissue regeneration. The utilization of mesenchymal stem cells (MSCs) from various sources has been widely explored and compared. In this regard, MSCs derived from bone marrow have been proposed and described as a promising cell resource due to their high yield of isolated cells with colony-forming potential, self-renewal capacity, MSC surface marker expression, and multi-lineage differentiation capacities in vitro. However, there is evidence for bone marrow MSCs (BM-MSCs) both in vitro and in vivo from different species presenting identical and distinct potential stemness characteristics. In this review, the fundamental knowledge of the growth kinetics and stemness properties of BM-MSCs in different animal species and humans are compared and summarized. Finally, to provide a full perspective, this review will procure results of current information studies focusing on the use of BM-MSCs in clinical practice.

p38 mitogen-activated protein kinase contributes to TNFα-induced endothelial tube formation of bone-marrow-derived mesenchymal stem cells by activating the JAK/STAT/TIE2 signaling axis

  • Sukjin Ou;Tae Yoon Kim;Euitaek Jung;Soon Young Shin
    • BMB Reports
    • /
    • 제57권5호
    • /
    • pp.238-243
    • /
    • 2024
  • Bone marrow-derived mesenchymal stem cells (BM-MSCs) can differentiate into endothelial cells in an inflammatory microenvironment. However, the regulatory mechanisms underlying this process are not entirely understood. Here, we found that TIE2 in BM-MSCs was upregulated at the transcriptional level after stimulation with tumor necrosis factor-alpha (TNFα), a major pro-inflammatory cytokine. Additionally, the STAT-binding sequence within the proximal region of TIE2 was necessary for TNFα-induced TIE2 promoter activation. TIE2 and STAT3 knockdown reduced TNFα-induced endothelial tube formation in BM-MSCs. Among the major TNFα-activated MAP kinases (ERK1/2, JNK1/2, and p38 MAPK) in BM-MSCs, only inhibition of the p38 kinase abrogated TNFα-induced TIE2 upregulation by inhibiting the JAK-STAT signaling pathway. These findings suggest that p38 MAP contributes to the endothelial differentiation of BM-MSCs by activating the JAK-STAT-TIE2 signaling axis in the inflammatory microenvironment.

Efficient In Vitro Labeling Rabbit Bone Marrow-Derived Mesenchymal Stem Cells with SPIO and Differentiating into Neural-Like Cells

  • Zhang, Ruiping;Li, Jing;Li, Jianding;Xie, Jun
    • Molecules and Cells
    • /
    • 제37권9호
    • /
    • pp.650-655
    • /
    • 2014
  • Mesenchymal stem cells (MSCs) can differentiate into neural cells to treat nervous system diseases. Magnetic resonance is an ideal means for cell tracking through labeling cells with superparamagnetic iron oxide (SPIO). However, no studies have described the neural differentiation ability of SPIO-labeled MSCs, which is the foundation for cell therapy and cell tracking in vivo. Our results showed that bone marrow-derived mesenchymal stem cells (BM-MSCs) labeled in vitro with SPIO can be induced into neural-like cells without affecting the viability and labeling efficiency. The cellular uptake of SPIO was maintained after labeled BM-MSCs differentiated into neural-like cells, which were the basis for transplanted cells that can be dynamically and non-invasively tracked in vivo by MRI. Moreover, the SPIO-labeled induced neural-like cells showed neural cell morphology and expressed related markers such as NSE, MAP-2. Furthermore, whole-cell patch clamp recording demonstrated that these neural-like cells exhibited electrophysiological properties of neurons. More importantly, there was no significant difference in the cellular viability and $[Ca^{2+}]_i$ between the induced labeled and unlabeled neural-like cells. In this study, we show for the first time that SPIO-labeled MSCs retained their differentiation capacity and could differentiate into neural-like cells with high cell viability and a good cellular state in vitro.

A Simple Method for Cat Bone Marrow-derived Mesenchymal Stem Cell Harvesting

  • Jin, Guang-Zhen;Lee, Young-Soo;Choi, Eu-Gene;Cho, Kyu-Woan;Kong, Il-Keun
    • 한국수정란이식학회지
    • /
    • 제23권2호
    • /
    • pp.127-131
    • /
    • 2008
  • Bone marrow (BM) cell harvesting is a crucial element in the isolation of mesenchymal stem cells (MSCs). A simple method for harvesting cat BM cells is described. The results show that a large number of BM cells can rapidly be harvested from the cat by this simple procedure. MSCs prepared by density-gradient method were spindle-shaped morphology with bipolar or polygonal cell bodies and strongly positive for CD9 and CD44 and negative for CD18 and CD45-like. They were capable of differentiation to adipocytic and osteocytic phenotypes when exposed to appropriate induction media. The advantages of this method are its rapidity, simplicity, low invasiveness, and low donor attrition and good outcome.

Canine Mesenchymal Stem Cells Derived from Bone Marrow: Isolation, Characterization, Multidifferentiation, and Neurotrophic Factor Expression in vitro

  • Jung, Dong-In;Ha, Jeong-Im;Kim, Ju-Won;Kang, Byeong-Teck;Yoo, Jong-Hyun;Park, Chul;Lee, Jong-Hwan;Park, Hee-Myung
    • 한국임상수의학회지
    • /
    • 제25권6호
    • /
    • pp.458-465
    • /
    • 2008
  • The purpose of this study is to characterize canine mesenchymal stem cells (MSCs) derived from bone marrow (BM) for use in research on the applications of stem cells in canine models of development, physiology, and disease. BM was harvested antemortem by aspiration from the greater tubercle of the humerus of 30 normal beagle dogs. Canine BM-derived MSCs were isolated according to methods developed for other species and were characterized based on their morphology, growth traits, cell-surface antigen profiles, differentiation repertoire, immunocytochemistry results, and neurotrophic factor expression in vitro. The canine MSCs exhibited a fibroblast-like morphology with a polygonal or spindle-shaped appearance and long processes; further, their cell-surface antigen profiles were similar to those of their counterparts in other species such as rodents and humans. The canine MSCs could differentiate into osteocytes and neurons on incubation with appropriate induction media. RT-PCR analysis revealed that these cells expressed NGF, bFGF, SDF-1, and VEGF. This study demonstrated that isolating canine MSCs from BM, stem-cell technology can be applied to a large variety of organ dysfunctions caused by degenerative diseases and injuries in dogs. Furthermore, our results indicated that canine MSCs constitutively secrete endogenous factors that enhance neurogenesis and angiogenesis. Therefore, these cells are potentially useful for treating dogs affected with various neurodegenerative diseases and spinal-cord injuries.

태반유래 줄기세포와 골수유래 줄기세포에서의 마이크로RNA 발현비교 (Comparison of MicroRNA Expression in Placenta-derived Mesenchymal Stem Cells and Bone Marrow-derived Stem Cells)

  • 김수환
    • 생명과학회지
    • /
    • 제24권11호
    • /
    • pp.1238-1243
    • /
    • 2014
  • 중간엽줄기세포(mesenchymal stem cell, MSC)은 세포치료로 각광받아 널리 사용되고 있다. 이들은 줄기세포의 분화성을 이용하여 많은 만성질환에 연관되어 치료제로 사용되고 있다. 줄기세포는 다른 화학적 치료법에 비해 많은 장점을 가지고 있다. 왜냐하면 줄기세포치료는 자기자신, 혹은 동종의 세포를 이용한 치료이기 때문에 화학 치료에 비해 부작용이나 치료의 위험성이 덜하다. 그리고 마이크로RNA또한 최근 기 존재와 기능이 밝혀져서 연구되고 있는데 특히 항암, 세포생장촉진 등의 기능을 이용해 항암, 만성질환 치료에 접목되어 치료제로의 역할이 기대된다. 마이크로RNA는 대부분의 대사과정이나 항상성조절에 관여되어있다. 따라서 마이크로RNA가 저 발현 혹은 과 발현하게 되면 만성질환으로 이어지게 된다. 하지만 줄기세포와 마이크로RNA의 상호간 보조효과는 잘 연구되어 있지 않다. 따라서 이들 간의 상관관계를 확인하기 위하여 태반유래 줄기세포(PDSC)와 골수줄기세포(BM-MSC), 대조군으로 섬유아세포(Fibroblast, WI-38)을 사용하여 이들이 발현하는 마이크로RNA 발현을 확인해 보았다. 각각의 MSC 세포주에 대하여 특정 마이크로RNA의 발현량을 확인해 보았다. 결과 PDSC의 경우엔 마이크로RNA-34a의 발현이 높았고 BM-MSC의 경우에는 마이크로RNA-27a, 33a, 33b, 211의 발현이 높은 것을 확인할 수 있었다. 따라서 우리는 각각의 MSC세포주와 그들이 발현하는 기능성 마이크로RNA을 연관지어 효과적인 세포치료에 활용될 수 있을 것을 기대한다.

사람의 골수와 제대정맥에서 유래된 중간엽 줄기세포에서 TREK1 통로의 기능적 발현 (Functional expression of TREK1 channel in human bone marrow and human umbilical cord vein-derived mesenchymal stem cells)

  • 박경선;김양미
    • 한국산학기술학회논문지
    • /
    • 제16권3호
    • /
    • pp.1964-1971
    • /
    • 2015
  • 사람의 골수 또는 제대정맥에서 유래된 중간엽 줄기 세포 (hBM-MSC 또는 hUC-MSC)는 임상적 치료 적용에 매우 유용한 세포유형으로 알려져 왔다. 우리는 이러한 세포에서 two-pore 도메인 포타슘 (K2P)채널을 조사하였다. K2P 채널은 다양한 세포유형들에서 안정막 전위를 형성하는데 중요한 역할을 한다. 그들 중 TREK1은 수소, 저산소증, 다불포화 지방산, 항우울제 및 신경전달물질들의 표적이다. 우리는 RT-PCR 분석과 팻취고정기법을 이용하여 hBM-MSCs와 hUC-MSC가 기능적인 TREK1 채널을 발현하는지 조사했다. hBM-MSCs와 hUC-MSCs에서 100 pS 단일 채널 전도도를 가진 포타슘채널이 발견되었고, 그 채널은 세포막 신전 (-5 mmHg ~ -15 mmHg), 아라키도닉산 ($10{\mu}M$), 세포내 산성화 (pH 6.0)에 의해 활성화 되었다. 이러한 전기생리학적 성질은 TREK1과 유사하였다. 우리의 결과는 안정막 전위에 기여하는 TREK1 채널이 hBM-MSC와 hUC-MSC에 기능적으로 존재하고 있음을 제시한다.

A Comparison of ROCK Inhibitors on Human Bone Marrow-Derived Mesenchymal Stem Cell Differentiation into Neuron-Like Cells

  • Lee, Hyun-Sun;Kim, Kwang-Sei;O, Eun-Ju;Joe, Young-Ae
    • Biomolecules & Therapeutics
    • /
    • 제18권4호
    • /
    • pp.386-395
    • /
    • 2010
  • Bone marrow-derived mesenchymal stem cells (BM-MSC) are a multipotent cell population that can differentiate into neuron-like cells. Previously it has been reported that murine BM-MSC can differentiate into neuron-like cells by co-treatment with a Rho-associated kinase (ROCK) inhibitor -Y27632 and $CoCl_2$. In this study, we compared several ROCK inhibitors for the ability to induce human BM-MSCs to differentiate into neuron-like cells in the presence of $CoCl_2$. Y27632 with high specificity for ROCK at 1-30 ${\mu}M$ was best at inducing neuronal differentiation of MSCs. Compared to HA1077 and H1152, which also effectively induced morphological change into neuron-like cells, Y27632 showed less toxicity even at 100 ${\mu}M$, and resulted in longer multiple branching processes at a wide range of concentrations at 6 h and 72 h post-induction. H89, however, which has less specificity by inhibition of protein kinase A, S6 kinase 1 and MSK1 with similar or greater potency, was less effective at inducing neuronal differentiation of MSCs. Simvastatin, which can inhibit Rho, Ras, and Rac by blocking the synthesis of isoprenoid intermediates, showed little activity for inducing morphological changes of MSCs into neuron-like cells. Accordingly, the expression patterns for neuronal cell markers,including ${\beta}$-tubulin III, neuron-specific enolase, neurofilament, and microtubule-associated protein, were consistent with the pattern of the morphological changes. The data suggest that the ROCK inhibitors with higher specificity are more effective at inducing neuronal differentiation of MSCs.

동결 보호제(DMSO) 농도에 따른 돼지 중간엽 줄기세포의 Caspase 3과 7 발현 (Activation of Caspase-3 and -7 on Porcine Bone Marrow Derived Mesenchymal Stem Cells (pBM-MSCs) Cryopreserved with Dimethyl Sulfoxide (DMSO))

  • 옥선아;노규진
    • 한국수정란이식학회지
    • /
    • 제27권3호
    • /
    • pp.183-187
    • /
    • 2012
  • Adult stem cell transplantation has been increased every year, because of the lack of organ donors for regenerative medicine. Therefore, development of reliable and safety cryopreservation and bio-baking method for stem cell therapy is urgently needed. The present study investigated safety of dimethyl sulfoxide (DMSO) such as common cryoprotectant on porcine bone marrow derived mesenchymal stem cells (pBM-MSCs) by evaluating the activation of Caspase-3 and -7, apoptosis related important signal pathway. pBM-MSCs used for the present study were isolated density gradient method by Ficoll-Paque Plus and cultured in A-DMEM supplemented 10% FBS at $38.5^{\circ}C$ in 5% $CO_2$ incubator. pBM-MSCs were cryopreserved in A-DMEM supplemented either with 5%, 10% or 20% DMSO by cooling rate at $-1^{\circ}C$/min in a Kryo 360 (planner 300, Middlesex, UK) and kept into $LN_2$. Survival rate of cells after thawing did not differ between 5% and 10% DMSO but was lowest in 20% DMSO by 0.4% trypan blue exclusion. Activation of Caspase-3 and -7 by Vybrant FAM Caspase-3 and -7 Assay Assay Kit (Molecular probes, Inc.OR, USA) was analyzed with a flow cytometer. Both of cryopreserved and control groups (fresh pBM-MSCs) were observed after the activation of Caspase-3 and -7. The activation did not differ between 5% and 10% DMSO, but was observed highest in 20% DMSO. Therefore 5% DMSO can be possibly used for cell cryopreservation instead of 10% DMSO.

Characterization of human cardiac mesenchymal stromal cells and their extracellular vesicles comparing with human bone marrow derived mesenchymal stem cells

  • Kang, In Sook;Suh, Joowon;Lee, Mi-Ni;Lee, Chaeyoung;Jin, Jing;Lee, Changjin;Yang, Young Il;Jang, Yangsoo;Oh, Goo Taeg
    • BMB Reports
    • /
    • 제53권2호
    • /
    • pp.118-123
    • /
    • 2020
  • Cardiac regeneration with adult stem-cell (ASC) therapy is a promising field to address advanced cardiovascular diseases. In addition, extracellular vesicles (EVs) from ASCs have been implicated in acting as paracrine factors to improve cardiac functions in ASC therapy. In our work, we isolated human cardiac mesenchymal stromal cells (h-CMSCs) by means of three-dimensional organ culture (3D culture) during ex vivo expansion of cardiac tissue, to compare the functional efficacy with human bone-marrow derived mesenchymal stem cells (h-BM-MSCs), one of the actively studied ASCs. We characterized the h-CMSCs as CD90low, c-kitnegative, CD105positive phenotype and these cells express NANOG, SOX2, and GATA4. To identify the more effective type of EVs for angiogenesis among the different sources of ASCs, we isolated EVs which were derived from CMSCs with either normoxic or hypoxic condition and BM-MSCs. Our in vitro tube-formation results demonstrated that the angiogenic effects of EVs from hypoxia-treated CMSCs (CMSC-Hpx EVs) were greater than the well-known effects of EVs from BM-MSCs (BM-MSC EVs), and these were even comparable to human vascular endothelial growth factor (hVEGF), a potent angiogenic factor. Therefore, we present here that CD90lowc-kitnegativeCD105positive CMSCs under hypoxic conditions secrete functionally superior EVs for in vitro angiogenesis. Our findings will allow more insights on understanding myocardial repair.