• Title/Summary/Keyword: bone marrow cell

Search Result 759, Processing Time 0.03 seconds

Biology and Potential Use of Chicken Bone Marrow-derived Cells

  • Ko, Dongwoo;Lim, Jeong Mook
    • Journal of Embryo Transfer
    • /
    • v.33 no.1
    • /
    • pp.31-40
    • /
    • 2018
  • Developmental aspects of chicken embryos showed dramatic difference compared with those of mammals and consequently, such difference in various developmental events leads to different feasibility in both clinical and industrial application. We have concentrated on the studies for using of chicken bone marrow cells and currently we found number of unique cellular properties. Through this article, we reviewed characteristics and cell signaling of osteogenic cells during endochondral ossification in chicken long bone.

GDNF secreted by pre-osteoclasts induces migration of bone marrow mesenchymal stem cells and stimulates osteogenesis

  • Yi, Sol;Kim, Jihee;Lee, Soo Young
    • BMB Reports
    • /
    • v.53 no.12
    • /
    • pp.646-651
    • /
    • 2020
  • Bone resorption is linked to bone formation via temporal and spatial coupling within the remodeling cycle. Several lines of evidence point to the critical role of coupling factors derived from pre-osteoclasts (POCs) during the regulation of bone marrow-derived mesenchymal stem cells (BMMSCs). However, the role of glial cell-derived neurotrophic factor (GDNF) in BMMSCs is not completely understood. Herein, we demonstrate the role of POC-derived GDNF in regulating the migration and osteogenic differentiation of BMMSCs. RNA sequencing revealed GDNF upregulation in POCs compared with monocytes/macrophages. Specifically, BMMSC migration was inhibited by a neutralizing antibody against GDNF in pre-osteoclast-conditioned medium (POC-CM), whereas treatment with a recombinant GDNF enhanced migration and osteogenic differentiation. In addition, POC-CM derived from GDNF knock-downed bone marrow macrophages suppressed BMMSC migration and osteogenic differentiation. SPP86, a small molecule inhibitor, inhibits BMMSC migration and osteogenic differentiation by targeting the receptor tyrosine kinase RET, which is recruited by GDNF into the GFRα1 complex. Overall, this study highlights the role of POC-derived GDNF in BMMSC migration and osteogenic differentiation, suggesting that GDNF regulates bone metabolism.

Operative Treatment for Osteochondral Lesions of the Talus: Bone Marrow Aspirate Concentrate and Matrix-induced Chondrogenesis (거골 골연골병변에 대한 수술적 치료: 골수 흡인물 농축액 및 기질 유래 연골 형성)

  • Kim, Bom Soo;Na, Yeop;Kwon, Won-Hwan
    • Journal of Korean Foot and Ankle Society
    • /
    • v.24 no.2
    • /
    • pp.61-68
    • /
    • 2020
  • Bone marrow aspirate concentrate and matrix-induced chondrogenesis (BMIC) is an interesting treatment option for osteochondral lesions of the talus with promising short- to mid-term results. The various terminologies used to describe this surgical method need to be addressed. These include bone marrow-derived cell transplantation, matrix-induced bone marrow aspirate concentrate, and matrix-associated stem cell transplantation. BMIC is a one-stage, minimally invasive surgery performed arthroscopically or using a mini-open arthrotomy approach without a malleolar osteotomy in most cases. The lesion is replaced with hyaline-like cartilage, and treatmentrelated complications are rare. BMIC is a safe and effective treatment option and should be considered in large lesions or lesions with a prior treatment history.

Comparative characteristic study from bone marrow-derived mesenchymal stem cells

  • Purwaningrum, Medania;Jamilah, Nabila Syarifah;Purbantoro, Steven Dwi;Sawangmake, Chenphop;Nantavisai, Sirirat
    • Journal of Veterinary Science
    • /
    • v.22 no.6
    • /
    • pp.74.1-74.13
    • /
    • 2021
  • Tissue engineering has been extensively investigated and proffered to be a potential platform for novel tissue regeneration. The utilization of mesenchymal stem cells (MSCs) from various sources has been widely explored and compared. In this regard, MSCs derived from bone marrow have been proposed and described as a promising cell resource due to their high yield of isolated cells with colony-forming potential, self-renewal capacity, MSC surface marker expression, and multi-lineage differentiation capacities in vitro. However, there is evidence for bone marrow MSCs (BM-MSCs) both in vitro and in vivo from different species presenting identical and distinct potential stemness characteristics. In this review, the fundamental knowledge of the growth kinetics and stemness properties of BM-MSCs in different animal species and humans are compared and summarized. Finally, to provide a full perspective, this review will procure results of current information studies focusing on the use of BM-MSCs in clinical practice.

Characterizations of Cell Lineage Markers in the Bone Marrow Cells of Recloned GFP Pigs for Possible Use of Stem Cell Population

  • Park, Kwang-Wook;Choi, Sung-Sik;Lee, Dong-Ho;Lee, Hwang;Choi, Seung-Kyu;Park, Chang-Sik;Lee, Sang-Ho
    • Reproductive and Developmental Biology
    • /
    • v.35 no.1
    • /
    • pp.23-31
    • /
    • 2011
  • Two piglets and one juvenile pig were used to investigate closely what types of cells express green fluorescent protein (GFP) and if any, whether the GFP-tagged cells could be used for stem cell transplantation research as a middle-sized animal model in bone marrow cells of recloned GFP pigs. Bone marrow cells were recovered from the tibia, and further analyzed with various cell lineage markers to determine which cell lineage is concurrently expressing visible GFP in each individual animal. In the three animals, visible GFP were observed only in proportions of the plated cells immediately after collection, showing 41, 2 and 91% of bone marrow cells in clones #1, 2 and 3, respectively. The intensity of the visible GFP expression was variable even in an individual clone depending on cell sizes and types. The overall intensities of GFP expression were also different among the individual clones from very weak, weak to strong. Upon culture for 14 days in vitro (14DIV), some cell types showed intensive GFP expression throughout the cells; in particular, in cytoskeletons and the nucleus, on the other hand. Others are shown to be diffused GFP expression patterns only in the cytoplasm. Finally, characterization of stem cell lineage markers was carried out only in the clone #3 who showed intensive GFP expression. SSEA-1, SSEA-3, CD34, nestin and GFAP were expressed in proportions of the GFP expressing cells, but not all of them, suggesting that GFP expression occur in various cell lineages. These results indicate that targeted insertion of GFP gene should be pursued as in mouse approach to be useful for stem cell research. Furthermore, cell- or tissue-specific promoter should also be used if GFP pig is going to be meaningful for a model for stem cell transplantation.

Effects of Houyttnia cordata on Bone Marrow Stromal Cell and Osteoporetic Rat (어성초 추출물 부탄올 분획이 Bone Marrow Stromal Cell 분열능 및 골다공증 랫드에 미치는 영향)

  • Song, Kyoo-Chun;Hwang, Gwi-Seo
    • Journal of Society of Preventive Korean Medicine
    • /
    • v.13 no.2
    • /
    • pp.103-113
    • /
    • 2009
  • This study was performed to evaluate the effect of HCB on the bone mass and its related factors in estrogen-deficient animal model. The model rats of osteoporosis showed a significant decrease in bone density, bone ash density, calcium content of femur bone. At the 14th day after ovariectomy-surgery, rats were administered with HCB, extract of Houyttnia cordata, per orally, and continued for 10 weeks. And osteoporosis related parameters were determined to investigate the effect of HCB. Osteoporotic rats showed lower serum estrogen level, higher body weight than normal rats, and showed atrophy of uterine horns.

  • PDF

STUDIES ON THE MACROPHAGE INFLAMMATORY $PROTEIN-1{\alpha}$ IN BONE MARROW, SPLEEN, AND MACROPHAGE (비장, 골수세포 및 대식세포에서의 Macrophage Inflammatory $Protein-1{\alpha}(MIP-1{\alpha})$ 에 관한 연구)

  • Song, In-Taeck;Oh, Kwi-Ok;Kim, Hyung-Sup
    • Journal of Periodontal and Implant Science
    • /
    • v.23 no.1
    • /
    • pp.48-55
    • /
    • 1993
  • Macrophage inflammatory $protein-1{\alpha}(MIP-1{\alpha})$ from activated T cell or macrophage, which is small inducible cytokine of unkown biological function, has been shown to display inflammation chemokinetic activities, as well as myelosuppressive effect on more immature progenitor cells. In this paper we show the $MIP-1{\alpha}$ mRNA expression and the presence of $MIP-1{\alpha}$ binding sites from murine macrophage cell line RAW 264.7, and primary cells of mouse bone marrow and spleen. $MIP-1{\alpha}$ mRNA was induced from LPS-stimulated RAW 264.7, but not inhibited by cyclosporin A treatment, and also was expressed from mouse splenocyted and bone marrow cell which were not increased by ferritin or lactoferrin treatment. The results of receptor binding assay showed that radiolabeled RAW 264.7 cell with kd value of 0.91 nM, and binding sites per cell of 378. bone marrow cell and splenocyte also appeared to have $MIP-1{\alpha}$ binding sites 33 and 11 per cell, respectiviely.

  • PDF

The effect of 3mW 850nm Laser Diode on RAT BM-cell (3mW 850nm Laser Diode가 Rat BM-Cell에 미치는 효과)

  • Cheon, Min-Woo;Kim, Seong-Hwan;Park, Yong-Pil
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.514-515
    • /
    • 2008
  • Low level laser therapy has various therapy effects. This paper performed the basic study for developing the Low Level Laser Therapy Equipment for medical treatment. The apparatus has been fabricated using the laser diode and microprocessor unit. This equipment was fabricated using a micro-controller and a laser diode, and designed to enable us to control light time, frequency and so on. In this study, the designed device was used irradiation to find out how 850 nm laser diode affected the cell proliferation of RAT bone-marrow cells. Experiment was performed to irradiation group and non-irradiation group for Rat bone marrow cells. MTT assay method was chosen to verify the cell increase of two groups and the effect of irradiation on cell proliferation was examined by measuring 590 nm transmittance of micro plate reader. As a result, the cell increase of Rat bone marrow cells was verified in irradiation group as compared to non-irradiation group. The fact that specific wavelength irradiation has an effect on cell vitality and proliferation is known through this study.

  • PDF

Effect of the 100Hz PWM Low Power Light Irradiation in Proliferation of NTacSam:SD Bone-marrow Cell (NTacSam:SD 골수 세포의 증식에 100Hz PWM 저출력 광 조사가 미치는 효과)

  • Cheon, Min-Woo;Kim, Seong-Hwan;Lee, Ho-Sic;Park, Yong-Pil
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.04b
    • /
    • pp.10-11
    • /
    • 2008
  • We developed the equipment palpating cell proliferation using a high brightness LED. This equipment was fabricated using a micro-controller and a high brightness LED, and designed to enable us to control light irradiation time, intensity, frequency and so on. Especially, to control the light irradiation frequency, FPGA was used, and to control the change of output value, TLC5941 was used. Control stage is divided into 30 levels by program. Consequently, the current value could be controlled by the change of level in Continue Wave(CW) and Pulse Width Modulation(PWM), and the output of a high brightness LED could be controlled stage by stage. And then, each experiment was performed to irradiation group and non-irradiation group for bone marrow cells. MIT assay method was chosen to verify the cell increase of two groups and the effect of irradiation on cell proliferation was examined by measuring 590nm transmittance of ELISA reader. As a result, the cell increase of bone marrow cells was verified in irradiation group as compared to non-irradiation group.

  • PDF

Effects of Interleukin-$1\beta$, Tumor Necrosis Factor-$\alpha$ and Interferon-$\gamma$ on the Nitric Oxide Production and Osteoclast Generation in the Culture of Mouse Bone Marrow Cells

  • Kwon, Young-Man;Kim, Se-Won;Ko, Seon-Yle
    • International Journal of Oral Biology
    • /
    • v.31 no.2
    • /
    • pp.67-72
    • /
    • 2006
  • Nitric oxide(NO) is a labile, uncharged, reactive radical that functions as a sensitive mediator of intercellular communication in diverse tissues. It has been reported that NO is produced by osteoblast and these results may suggest that NO is integrally involved in the regulation of osteoclast formation and osteoclast resorption activity by osteoblastic cells. We examined the effect of cytokines on NO release by mouse bone marrow cell. We also examined the effects of cytokines and sodium nitroprusside(SNP) on the formation of osteoclast-like cell from mouse bone marrow cells in culture. Cytokines stimulated NO production of mouse bone marrow cells, and N-nitro-L-arginine methyl ester, a specific inhibitor of NO synthase, suppressed the cytokine-induced NO production. SNP showed dual action in the generation of osteoclasts. The addition of $30{\mu}M$ SNP inhibited the formation of tartrate resistant acid phosphatase(TRAP)(+) multinucleated cell, whereas lower concentration($3{\mu}M$) of SNP enhanced it. Although the precise action of NO remains to be elucidated in detail, the action of NO in osteoclast generation in our studies seems to be associated, at least in part, with bone metabolism and bone pathophysiology.