References
- Aigner, T., Dietz, U., Stoss, H., & von der Mark, K. (1995). Differential expression of collagen types I, II, III, and X in human osteophytes. Lab Invest, 73(2), 236-243.
- Akiyama, H., Chaboissier, M. C., Martin, J. F., Schedl, A., & de Crombrugghe, B. (2002). The transcription factor Sox9 has essential roles in successive steps of the chondrocyte differentiation pathway and is required for expression of Sox5 and Sox6. Genes Dev, 16(21), 2813-2828. doi:10.1101/gad.1017802
- Akiyama, K., You, Y. O., Yamaza, T., Chen, C., Tang, L., Jin, Y., . . . Shi, S. (2012). Characterization of bone marrow derived mesenchymal stem cells in suspension. Stem Cell Res Ther, 3(5), 40. doi:10.1186/scrt131
- Alexander, T., Schneider, S., Hoyer, B., Cheng, Q., Thiel, A., Ziemer, S., . . . Hiepe, F. (2013). Development and resolution of secondary autoimmunity after autologous haematopoietic stem cell transplantation for systemic lupus erythematosus: competition of plasma cells for survival niches? Ann Rheum Dis, 72(6), 1102-1104. doi:10.1136/annrheumdis-2012-202729
- Amano, K., Hata, K., Sugita, A., Takigawa, Y., Ono, K., Wakabayashi, M., . . . Yoneda, T. (2009). Sox9 family members negatively regulate maturation and calcification of chondrocytes through up-regulation of parathyroid hormone-related protein. Mol Biol Cell, 20(21), 4541-4551. doi:10.1091/mbc.E09-03-0227
- Anbari, F., Khalili, M. A., Bahrami, A. R., Khoradmehr, A., Sadeghian, F., Fesahat, F., & Nabi, A. (2014). Intravenous transplantation of bone marrow mesenchymal stem cells promotes neural regeneration after traumatic brain injury. Neural Regen Res, 9(9), 919-923. doi:10.4103/1673-5374.133133
- Aubin, J. E. (2001). Regulation of osteoblast formation and function. Rev Endocr Metab Disord, 2(1), 81-94. https://doi.org/10.1023/A:1010011209064
- Campagnoli, C., Roberts, I. A., Kumar, S., Bennett, P. R., Bellantuono, I., & Fisk, N. M. (2001). Identification of mesenchymal stem/progenitor cells in human first-trimester fetal blood, liver, and bone marrow. Blood, 98(8), 2396-2402. https://doi.org/10.1182/blood.V98.8.2396
- Chanda, D., Kumar, S., & Ponnazhagan, S. (2010). Therapeutic potential of adult bone marrow-derived mesenchymal stem cells in diseases of the skeleton. J Cell Biochem, 111(2), 249-257. doi:10.1002/jcb.22701
- Chen, G., Deng, C., & Li, Y. P. (2012). TGF-beta and BMP signaling in osteoblast differentiation and bone formation. Int J Biol Sci, 8(2), 272-288. doi:10.7150/ijbs.2929
- Chen, H., Ghori-Javed, F. Y., Rashid, H., Adhami, M. D., Serra, R., Gutierrez, S. E., & Javed, A. (2014). Runx2 regulates endochondral ossification through control of chondrocyte proliferation and differentiation. J Bone Miner Res, 29(12), 2653-2665. doi:10.1002/jbmr.2287
- Chen, S., Gluhak-Heinrich, J., Wang, Y. H., Wu, Y. M., Chuang, H. H., Chen, L., . . . MacDougall, M. (2009). Runx2, osx, and dspp in tooth development. J Dent Res, 88(10), 904-909. doi:10.1177/0022034509342873
- Chu, C. R. (2015). The Challenge and the Promise of Bone Marrow Cells for Human Cartilage Repair. Cartilage, 6(2 Suppl), 36S-45S. doi:10.1177/1947603515574839
- Chung, U. I. (2004). Essential role of hypertrophic chondrocytes in endochondral bone development. Endocr J, 51(1), 19-24. https://doi.org/10.1507/endocrj.51.19
- Csaki, C., Matis, U., Mobasheri, A., Ye, H., & Shakibaei, M. (2007). Chondrogenesis, osteogenesis and adipogenesis of canine mesenchymal stem cells: a biochemical, morphological and ultrastructural study. Histochem Cell Biol, 128(6), 507-520. doi:10.1007/s00418-007-0337-z
- Dai, R., Rossello, R., Chen, C. C., Kessler, J., Davison, I., Hochgeschwender, U., & Jarvis, E. D. (2014). Maintenance and neuronal differentiation of chicken induced pluripotent stem-like cells. Stem Cells Int, 2014, 182737. doi:10.1155/2014/182737
- Daikeler, T., & Tyndall, A. (2007). Autoimmunity following haematopoietic stem-cell transplantation. Best Pract Res Clin Haematol, 20(2), 349-360. doi:10.1016/j.beha.2006.09.008
- Day, T. F., Guo, X., Garrett-Beal, L., & Yang, Y. (2005). Wnt/beta-catenin signaling in mesenchymal progenitors controls osteoblast and chondrocyte differentiation during vertebrate skeletogenesis. Dev Cell, 8(5), 739-750. doi:10.1016/j.devcel. 2005.03.016
- Dong, Y. F., Soung do, Y., Schwarz, E. M., O'Keefe, R. J., & Drissi, H. (2006). Wnt induction of chondrocyte hypertrophy through the Runx2 transcription factor. J Cell Physiol, 208(1), 77-86. doi:10.1002/jcp.20656
- Eslaminejad, M. B., Fani, N., & Shahhoseini, M. (2013). Epigenetic regulation of osteogenic and chondrogenic differentiation of mesenchymal stem cells in culture. Cell J, 15(1), 1-10.
- Flores-Figueroa, E., Montesinos, J. J., & Mayani, H. (2006). [Mesenchymal stem cell; history, biology and clinical application]. Rev Invest Clin, 58(5), 498-511.
- Friedenstein, A. J., Chailakhyan, R. K., & Gerasimov, U. V. (1987). Bone marrow osteogenic stem cells: in vitro cultivation and transplantation in diffusion chambers. Cell Tissue Kinet, 20(3), 263-272.
- Friedenstein, A. J., Piatetzky, S., II, & Petrakova, K. V. (1966). Osteogenesis in transplants of bone marrow cells. J Embryol Exp Morphol, 16(3), 381-390.
- Frisbie, D. D., Lu, Y., Kawcak, C. E., DiCarlo, E. F., Binette, F., & McIlwraith, C. W. (2009). In vivo evaluation of autologous cartilage fragment-loaded scaffolds implanted into equine articular defects and compared with autologous chondrocyte implantation. Am J Sports Med, 37 Suppl 1, 71S-80S. doi:10.1177/0363546509348478
- Fujita, T., Azuma, Y., Fukuyama, R., Hattori, Y., Yoshida, C., Koida, M., . . . Komori, T. (2004). Runx2 induces osteoblast and chondrocyte differentiation and enhances their migration by coupling with PI3K-Akt signaling. J Cell Biol, 166(1), 85-95. doi:10.1083/jcb.200401138
- Garside, V. C., Cullum, R., Alder, O., Lu, D. Y., Vander Werff, R., Bilenky, M., . . . Hoodless, P. A. (2015). SOX9 modulates the expression of key transcription factors required for heart valve development. Development, 142(24), 4340-4350. doi:10.1242/dev.125252
- Goldberg, A., Mitchell, K., Soans, J., Kim, L., & Zaidi, R. (2017). The use of mesenchymal stem cells for cartilage repair and regeneration: a systematic review. J Orthop Surg Res, 12(1), 39. doi:10.1186/s13018-017-0534-y
- Gordon, S., Pluddemann, A., & Martinez Estrada, F. (2014). Macrophage heterogeneity in tissues: phenotypic diversity and functions. Immunol Rev, 262(1), 36-55. doi:10.1111/imr.12223
- Gregory, C. A., Gunn, W. G., Peister, A., & Prockop, D. J. (2004). An Alizarin red-based assay of mineralization by adherent cells in culture: comparison with cetylpyridinium chloride extraction. Anal Biochem, 329(1), 77-84. doi:10.1016/j.ab.2004.02.002
- Guo, X., & Wang, X. F. (2009). Signaling cross-talk between TGF-beta/BMP and other pathways. Cell Res, 19(1), 71-88. doi:10.1038/cr.2008.302
- Gurevitch, O., Slavin, S., & Feldman, A. G. (2007). Conversion of red bone marrow into yellow - Cause and mechanisms. Med Hypotheses, 69(3), 531-536. doi:10.1016/j.mehy.2007.01.052
- Gurevitch, O., Slavin, S., Resnick, I., Khitrin, S., & Feldman, A. (2009). Mesenchymal progenitor cells in red and yellow bone marrow. Folia Biol (Praha), 55(1), 27-34. https://doi.org/10.3409/173491607780006353
- Haaijman, A., D'Souza, R. N., Bronckers, A. L., Goei, S. W., & Burger, E. H. (1997). OP-1 (BMP-7) affects mRNA expression of type I, II, X collagen, and matrix Gla protein in ossifying long bones in vitro. J Bone Miner Res, 12(11), 1815-1823. doi:10.1359/jbmr.1997.12.11.1815
- Heim, M., Frank, O., Kampmann, G., Sochocky, N., Pennimpede, T., Fuchs, P., . . . Bendik, I. (2004). The phytoestrogen genistein enhances osteogenesis and represses adipogenic differentiation of human primary bone marrow stromal cells. Endocrinology, 145(2), 848-859. doi:10.1210/en.2003-1014
- Heino, T. J., & Hentunen, T. A. (2008). Differentiation of osteoblasts and osteocytes from mesenchymal stem cells. Curr Stem Cell Res Ther, 3(2), 131-145. https://doi.org/10.2174/157488808784223032
- Hill, T. P., Spater, D., Taketo, M. M., Birchmeier, W., & Hartmann, C. (2005). Canonical Wnt/beta-catenin signaling prevents osteoblasts from differentiating into chondrocytes. Dev Cell, 8(5), 727-738. doi:10.1016/j.devcel.2005.02.013
- Hofstetter, W., Guenther, H. L., Stutzer, A., Schenk, R., Fleisch, H., & Friis, R. (1991). Establishment and characterization of two immortalized cell lines of the osteoblastic lineage. J Bone Miner Res, 6(6), 609-622. doi:10.1002/jbmr.5650060612
- Hu, E., Tontonoz, P., & Spiegelman, B. M. (1995). Transdifferentiation of myoblasts by the adipogenic transcription factors PPAR gamma and C/EBP alpha. Proc Natl Acad Sci U S A, 92(21), 9856-9860. https://doi.org/10.1073/pnas.92.21.9856
- Hudson, J. E., Mills, R. J., Frith, J. E., Brooke, G., Jaramillo-Ferrada, P., Wolvetang, E. J., & Cooper-White, J. J. (2011). A defined medium and substrate for expansion of human mesenchymal stromal cell progenitors that enriches for osteo- and chondrogenic precursors. Stem Cells Dev, 20(1), 77-87. doi:10.1089/scd.2009.0497
- Indrawattana, N., Chen, G., Tadokoro, M., Shann, L. H., Ohgushi, H., Tateishi, T., . . . Bunyaratvej, A. (2004). Growth factor combination for chondrogenic induction from human mesenchymal stem cell. Biochem Biophys Res Commun, 320(3), 914-919. doi:10.1016/j.bbrc.2004.06.029
- Jin, X. H., Yang, L., Duan, X. J., Xie, B., Li, Z., & Tan, H. B. (2007). [In vivo MR imaging tracking of supermagnetic iron-oxide nanoparticle-labeled bone marrow mesenchymal stem cells injected into intra-articular space of knee joints: experiment with rabbit]. Zhonghua Yi Xue Za Zhi, 87(45), 3213-3218.
- Joyce, M. E., Roberts, A. B., Sporn, M. B., & Bolander, M. E. (1990). Transforming growth factor-beta and the initiation of chondrogenesis and osteogenesis in the rat femur. J Cell Biol, 110(6), 2195-2207. https://doi.org/10.1083/jcb.110.6.2195
- Kim, D. H., Yoo, K. H., Choi, K. S., Choi, J., Choi, S. Y., Yang, S. E., . . . Koo, H. H. (2005). Gene expression profile of cytokine and growth factor during differentiation of bone marrow-derived mesenchymal stem cell. Cytokine, 31(2), 119-126. doi:10.1016/j.cyto.2005.04.004
- Koch, M., Lemke, A., & Lange, C. (2015). Extracellular Vesicles from MSC Modulate the Immune Response to Renal Allografts in a MHC Disparate Rat Model. Stem Cells Int, 2015, 486141. doi:10.1155/2015/486141
- Kolambkar, Y. M., Peister, A., Soker, S., Atala, A., & Guldberg, R. E. (2007). Chondrogenic differentiation of amniotic fluid-derived stem cells. J Mol Histol, 38(5), 405-413. doi:10.1007/s10735-007-9118-1
- Komori, T. (2011). Signaling networks in RUNX2-dependent bone development. J Cell Biochem, 112(3), 750-755. doi:10.1002/jcb.22994
- Krebsbach, P. H., Kuznetsov, S. A., Bianco, P., & Robey, P. G. (1999). Bone marrow stromal cells: characterization and clinical application. Crit Rev Oral Biol Med, 10(2), 165-181. https://doi.org/10.1177/10454411990100020401
- Lang, P., Fritz, R., Vahlensieck, M., Majumdar, S., Berthezene, Y., Grampp, S., & Genant, H. K. (1992). [Residual and reconverted hematopoietic bone marrow in the distal femur. Spin-echo and opposed-phase gradient-echo MRT]. Rofo, 156(1), 89-95. doi:10.1055/s-2008-1032842
- Langhans, M. T., Yu, S., & Tuan, R. S. (2016). Stem Cells in Skeletal Tissue Engineering: Technologies and Models. Curr Stem Cell Res Ther, 11(6), 453-474. https://doi.org/10.2174/1574888X10666151001115248
- Leung, V. Y., Gao, B., Leung, K. K., Melhado, I. G., Wynn, S. L., Au, T. Y., . . . Cheah, K. S. (2011). SOX9 governs differentiation stage-specific gene expression in growth plate chondrocytes via direct concomitant transactivation and repression. PLoS Genet, 7(11), e1002356. doi:10.1371/journal.pgen.1002356
- Li, Y., Yu, X., Lin, S., Li, X., Zhang, S., & Song, Y. H. (2007). Insulin-like growth factor 1 enhances the migratory capacity of mesenchymal stem cells. Biochem Biophys Res Commun, 356(3), 780-784. doi:10.1016/j.bbrc.2007.03.049
- Lian, J. B., Javed, A., Zaidi, S. K., Lengner, C., Montecino, M., van Wijnen, A. J., . . . Stein, G. S. (2004). Regulatory controls for osteoblast growth and differentiation: role of Runx/Cbfa/AML factors. Crit Rev Eukaryot Gene Expr, 14(1-2), 1-41. https://doi.org/10.1615/CritRevEukaryotGeneExpr.v14.i12.10
- Liu, S. H., Yang, R. S., al-Shaikh, R., & Lane, J. M. (1995). Collagen in tendon, ligament, and bone healing. A current review. Clin Orthop Relat Res(318), 265-278.
- LoCascio, S. A., Spinelli, J., & Kurtz, J. (2011). Hematopoietic stem cell transplantation for the treatment of autoimmunity in type 1 diabetes. Curr Stem Cell Res Ther, 6(1), 29-37. https://doi.org/10.2174/157488811794480681
- Loebel, C., Czekanska, E. M., Bruderer, M., Salzmann, G., Alini, M., & Stoddart, M. J. (2015). In vitro osteogenic potential of human mesenchymal stem cells is predicted by Runx2/Sox9 ratio. Tissue Eng Part A, 21(1-2), 115-123. doi:10.1089/ten.TEA. 2014.0096
- Lu, L., Shen, R. N., & Broxmeyer, H. E. (1996). Stem cells from bone marrow, umbilical cord blood and peripheral blood for clinical application: current status and future application. Crit Rev Oncol Hematol, 22(2), 61-78. https://doi.org/10.1016/1040-8428(96)88370-3
- Lv, Y., Liu, B., Wang, H. P., & Zhang, L. (2016). Intramyocardial implantation of differentiated rat bone marrow mesenchymal stem cells enhanced by TGF-beta1 improves cardiac function in heart failure rats. Braz J Med Biol Res, 49(6), e5273. doi:10.1590/1414-431X20165273
- Mackay, A. M., Beck, S. C., Murphy, J. M., Barry, F. P., Chichester, C. O., & Pittenger, M. F. (1998). Chondrogenic differentiation of cultured human mesenchymal stem cells from marrow. Tissue Eng, 4(4), 415-428. https://doi.org/10.1089/ten.1998.4.415
- Malkiewicz, A., & Dziedzic, M. (2012). Bone marrow reconversion - imaging of physiological changes in bone marrow. Pol J Radiol, 77(4), 45-50. https://doi.org/10.12659/PJR.883628
- Mansour, A., Abou-Ezzi, G., Sitnicka, E., Jacobsen, S. E., Wakkach, A., & Blin-Wakkach, C. (2012). Osteoclasts promote the formation of hematopoietic stem cell niches in the bone marrow. J Exp Med, 209(3), 537-549. doi:10.1084/jem.20110994
- Merino-Gonzalez, C., Zuniga, F. A., Escudero, C., Ormazabal, V., Reyes, C., Nova-Lamperti, E., . . . Aguayo, C. (2016). Mesenchymal Stem Cell-Derived Extracellular Vesicles Promote Angiogenesis: Potencial Clinical Application. Front Physiol, 7, 24. doi:10.3389/fphys.2016.00024
- Moore, S. G., & Dawson, K. L. (1990). Red and yellow marrow in the femur: age-related changes in appearance at MR imaging. Radiology, 175(1), 219-223. doi:10.1148/radiology.175.1.2315484
- Morikawa, S., Mabuchi, Y., Kubota, Y., Nagai, Y., Niibe, K., Hiratsu, E., . . . Matsuzaki, Y. (2009). Prospective identification, isolation, and systemic transplantation of multipotent mesenchymal stem cells in murine bone marrow. J Exp Med, 206(11), 2483-2496. doi:10.1084/jem.20091046
- Nooeaid, P., Salih, V., Beier, J. P., & Boccaccini, A. R. (2012). Osteochondral tissue engineering: scaffolds, stem cells and applications. J Cell Mol Med, 16(10), 2247-2270. doi:10.1111/j.1582-4934.2012.01571.x
- Orlic, D., Kajstura, J., Chimenti, S., Limana, F., Jakoniuk, I., Quaini, F., . . . Anversa, P. (2001). Mobilized bone marrow cells repair the infarcted heart, improving function and survival. Proc Natl Acad Sci U S A, 98(18), 10344-10349. doi:10.1073/pnas.181177898
- Ortiz-Nieto, F., Johansson, L., Ahlstrom, H., & Weis, J. (2010). Quantification of lipids in human lower limbs using yellow bone marrow as the internal reference: gender-related effects. Magn Reson Imaging, 28(5), 676-682. doi:10.1016/j.mri.2010.03.014
- Pal, B., & Das, B. (2017). In vitro Culture of Naive Human Bone Marrow Mesenchymal Stem Cells: A Stemness Based Approach. Front Cell Dev Biol, 5, 69. doi:10.3389/fcell.2017.00069
- Pan, Q., Yu, Y., Chen, Q., Li, C., Wu, H., Wan, Y., . . . Sun, F. (2008). Sox9, a key transcription factor of bone morphogenetic protein-2-induced chondrogenesis, is activated through BMP pathway and a CCAAT box in the proximal promoter. J Cell Physiol, 217(1), 228-241. doi:10.1002/jcp.21496
- Parada, C., Li, J., Iwata, J., Suzuki, A., & Chai, Y. (2013). CTGF mediates Smad-dependent transforming growth factor beta signaling to regulate mesenchymal cell proliferation during palate development. Mol Cell Biol, 33(17), 3482-3493. doi:10.1128/MCB.00615-13
- Phinney, D. G., & Prockop, D. J. (2007). Concise review: mesenchymal stem/multipotent stromal cells: the state of transdifferentiation and modes of tissue repair--current views. Stem Cells, 25(11), 2896-2902. doi:10.1634/stemcells.2007-0637
- Pittenger, M. F., Mackay, A. M., Beck, S. C., Jaiswal, R. K., Douglas, R., Mosca, J. D., . . . Marshak, D. R. (1999). Multilineage potential of adult human mesenchymal stem cells. Science, 284(5411), 143-147. https://doi.org/10.1126/science.284.5411.143
- Roark, E. F., & Greer, K. (1994). Transforming growth factor-beta and bone morphogenetic protein-2 act by distinct mechanisms to promote chick limb cartilage differentiation in vitro. Dev Dyn, 200(2), 103-116. doi:10.1002/aja.1002000203
- Sakaki-Yumoto, M., Katsuno, Y., & Derynck, R. (2013). TGF-beta family signaling in stem cells. Biochim Biophys Acta, 1830(2), 2280-2296. doi:10.1016/j.bbagen.2012.08.008
- Shahi, M., Peymani, A., & Sahmani, M. (2017). Regulation of Bone Metabolism. Rep Biochem Mol Biol, 5(2), 73-82.
- Shapiro, F. (2008). Bone development and its relation to fracture repair. The role of mesenchymal osteoblasts and surface osteoblasts. Eur Cell Mater, 15, 53-76. https://doi.org/10.22203/eCM.v015a05
- Tavassoli, M., Houchin, D. N., & Jacobs, P. (1977). Fatty acid composition of adipose cells in red and yellow marrow: A possible determinant of haematopoietic potential. Scand J Haematol, 18(1), 47-53. https://doi.org/10.1111/j.1600-0609.1977.tb01476.x
- Tevlin, R., Walmsley, G. G., Marecic, O., Hu, M. S., Wan, D. C., & Longaker, M. T. (2016). Stem and progenitor cells: advancing bone tissue engineering. Drug Deliv Transl Res, 6(2), 159-173. doi:10.1007/s13346-015-0235-1
- Toma, C., Pittenger, M. F., Cahill, K. S., Byrne, B. J., & Kessler, P. D. (2002). Human mesenchymal stem cells differentiate to a cardiomyocyte phenotype in the adult murine heart. Circulation, 105(1), 93-98. https://doi.org/10.1161/hc0102.101442
- Visvader, J. E., & Stingl, J. (2014). Mammary stem cells and the differentiation hierarchy: current status and perspectives. Genes Dev, 28(11), 1143-1158. doi:10.1101/gad.242511.114
- Voronkov, A., & Krauss, S. (2013). Wnt/beta-catenin signaling and small molecule inhibitors. Curr Pharm Des, 19(4), 634-664. https://doi.org/10.2174/138161213804581837
- Wagers, A. J., & Weissman, I. L. (2004). Plasticity of adult stem cells. Cell, 116(5), 639-648. https://doi.org/10.1016/S0092-8674(04)00208-9
- Wang, C., Meng, H., Wang, X., Zhao, C., Peng, J., & Wang, Y. (2016). Differentiation of Bone Marrow Mesenchymal Stem Cells in Osteoblasts and Adipocytes and its Role in Treatment of Osteoporosis. Med Sci Monit, 22, 226-233. https://doi.org/10.12659/MSM.897044
- Woodbury, D., Reynolds, K., & Black, I. B. (2002). Adult bone marrow stromal stem cells express germline, ectodermal, endodermal, and mesodermal genes prior to neurogenesis. J Neurosci Res, 69(6), 908-917. doi:10.1002/jnr.10365
- Wu, Z., Xie, Y., Bucher, N. L., & Farmer, S. R. (1995). Conditional ectopic expression of C/EBP beta in NIH-3T3 cells induces PPAR gamma and stimulates adipogenesis. Genes Dev, 9(19), 2350-2363. https://doi.org/10.1101/gad.9.19.2350
- Xie, X. J., Wang, J. A., Cao, J., & Zhang, X. (2006). Differentiation of bone marrow mesenchymal stem cells induced by myocardial medium under hypoxic conditions. Acta Pharmacol Sin, 27(9), 1153-1158. doi:10.1111/j.1745-7254.2006.00436.x
- Yang, X., Chen, L., Xu, X., Li, C., Huang, C., & Deng, C. X. (2001). TGF-beta/Smad3 signals repress chondrocyte hypertrophic differentiation and are required for maintaining articular cartilage. J Cell Biol, 153(1), 35-46. https://doi.org/10.1083/jcb.153.1.35
- Yin, T., & Li, L. (2006). The stem cell niches in bone. J Clin Invest, 116(5), 1195-1201. doi:10.1172/JCI28568
- Zakaria, E., & Shafrir, E. (1967). Yellow bone marrow as adipose tissue. Proc Soc Exp Biol Med, 124(4), 1265-1268. https://doi.org/10.3181/00379727-124-31983
- Zhang, X., Siclari, V. A., Lan, S., Zhu, J., Koyama, E., Dupuis, H. L., . . . Qin, L. (2011). The critical role of the epidermal growth factor receptor in endochondral ossification. J Bone Miner Res, 26(11), 2622-2633. doi:10.1002/jbmr.502