• Title/Summary/Keyword: bonding surface

Search Result 1,571, Processing Time 0.028 seconds

Tailoring the properties of spray deposited V2O5 thin films using swift heavy ion beam irradiation

  • Rathika, R.;Kovendhan, M.;Joseph, D. Paul;Pachaiappan, Rekha;Kumar, A. Sendil;Vijayarangamuthu, K.;Venkateswaran, C.;Asokan, K.;Jeyakumar, S. Johnson
    • Nuclear Engineering and Technology
    • /
    • v.52 no.11
    • /
    • pp.2585-2593
    • /
    • 2020
  • Swift heavy ion (SHI) beam irradiation can generate desirable defects in materials by transferring sufficient energy to the lattice that favours huge possibilities in tailoring of materials. The effect of Ag15+ ion irradiation with energy 200 MeV on spray deposited V2O5 thin films of thickness 253 nm is studied at various ion doses from 5 × 1011 to 1 × 1013 ions/㎠. The XRD results of pristine film confirmed orthorhombic structure of V2O5 and its average crystallite size was found to be 20 nm. The peak at 394 cm-1 in Raman spectra confirmed O-V-O bonding of V2O5, whereas 917 cm-1 arise because of distortion in stoichiometry by a loss of oxygen atoms. Raman peaks vanished completely above the ion fluence of 5 × 1012 ions/㎠. Optical studies by UV-Vis spectroscopy shows decrement in transmittance with an increase in ion fluence up to 5 × 1012 ions/㎠. The red shift is observed both in the direct and indirect band gaps until 5 × 1012 ions/㎠. The surface topography of the pristine film revealed sheath like structure with randomly distributed spherical nano-particles. The roughness of film decreased and the density of spherical nanoparticles increased upon irradiation. Irradiation improved the conductivity significantly for fluence 5 × 1011 ions/㎠ due to band gap reduction and grain growth.

Correlation between Oxygen Related Bonds and Defects Formation in ZnO Thin Films by Using X-ray Diffraction and X-ray Photoelectron Spectroscopy (XRD와 XPS를 사용한 산화아연 박막의 결함형성과 산소연관 결합사이의 상관성)

  • Oh, Teresa
    • Korean Journal of Materials Research
    • /
    • v.23 no.10
    • /
    • pp.580-585
    • /
    • 2013
  • To observe the formation of defects at the interface between an oxide semiconductor and $SiO_2$, ZnO was prepared on $SiO_2$ with various oxygen gas flow rates by RF magnetron sputtering deposition. The crystallinity of ZnO depends on the characteristic of the surface of the substrate. The crystallinity of ZnO on a Si wafer increased due to the activation of ionic interactions after an annealing process, whereas that of ZnO on $SiO_2$ changed due to the various types of defects which had formed as a result of the deposition conditions and the annealing process. To observe the chemical shift to understand of defect deformations at the interface between the ZnO and $SiO_2$, the O 1s electron spectra were convoluted into three sub-peaks by a Gaussian fitting. The O 1s electron spectra consisted of three peaks as metal oxygen (at 530.5 eV), $O^{2-}$ ions in an oxygen-deficient region (at 531.66 eV) and OH bonding (at 532.5 eV). In view of the crystallinity from the peak (103) in the XRD pattern, the metal oxygen increased with a decrease in the crystallinity. However, the low FWHM (full width at half maximum) at the (103) plane caused by the high crystallinity depended on the increment of the oxygen vacancies at 531.66 eV due to the generation of $O^{2-}$ ions in the oxygen-deficient region formed by thermal activation energy.

A Study on the Laser Melting Deposition of Mixed Metal Powders to Prevent Interfacial Cracks (레이저 용융 금속 적층 시 결함 방지를 위한 혼합 분말 적층에 관한 연구)

  • Shim, D.S.;Lee, W.J.;Lee, S.B.;Choi, Y.S.;Lee, K.Y.;Park, S.H.
    • Transactions of Materials Processing
    • /
    • v.27 no.1
    • /
    • pp.5-11
    • /
    • 2018
  • Direct energy deposition (DED) technique uses a laser heat source to deposit a metal layer on a substrate. Many researchers have used the DED technique to study the hardfacing of molds and dies. The aim of this study is to obtain high surface hardness and a sound bonding between the AISI M4 deposits and a substrate utilizing a mixed powder that contains M4 and AISI P21 powders. To prevent interfacial cracks between the M4 deposits and the substrate, the mixed powder is pre-deposited onto a JIS S45C substrate, before the deposition of M4 powders. Interfacial defects occurring between the deposits and substrate and changes in the microhardness of the intermediate layer were examined. Observations of the cross-sections of deposited specimens revealed that the interfacial cracks appeared in samples with one and two mixed layers regardless of the mixture ratio. However, the crack was removed by increasing the mixture ratio and the number of intermediate layers. Meanwhile, the microhardness in the mixed layer was found to decrease with increasing ratio of P21 powder in the mixture and that in the upper region of the deposited layers was approximately 800 HV, which was attributed to various alloying elements in the M4 powder.

Effect of Dry Grinding of Laterite on the Extraction of Nickel and Cobalt (라테라이트광의 건식분쇄가 니켈 및 코발트의 침출에 미치는 영향)

  • Kim, Wan-Tae;Choi, Do-Young;Kim, Sang-Bae
    • Journal of the Mineralogical Society of Korea
    • /
    • v.23 no.3
    • /
    • pp.227-234
    • /
    • 2010
  • We investigated the effect of dry grinding of laterite on the extraction of nickel and cobalt. The major chemical compositions of the sample for this work were $SiO_2$, $Fe_2O_3$ and MgO. The sample contained 0.81% Ni and 0.02% Co. The major minerals of the sample were lizardite and quartz with minor amounts of forsterite and enstatite. The mean particle size, specific surface area and density of the ground sample decreased with increasing grinding time, while the amorphization of lizardite increased as identified by XRD analysis. The grinding enabled the extraction ratio of Ni and Co to increase by the breakdown of Mg-OH bonding in the lizardite structure. However, physical properties of quartz were not changed by grinding. The extraction ratio of Ni and Co increased with increasing grinding time. Approximately 80% of Ni and Co were extracted regardless of the kind of acid solutions when the sample was ground for 60 minutes.

A High Speed CMOS Arrayed Optical Transmitter for WPON Applications (WPON 응용을 위한 고속 CMOS어레이 광트랜스미터)

  • Yang, Choong-Reol;Lee, Sang-Soo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38B no.6
    • /
    • pp.427-434
    • /
    • 2013
  • In this paper, the design and layout of a 2.5 Gbps arrayed VCSEL driver for optical transceiver having arrayed multi-channel of integrating module is confirmed. In this paper, a 4 channel 2.5 Gbps VCSEL (vertical cavity surface emitting laser) driver array with automatic optical power control is implemented using $0.18{\mu}m$ CMOS process technology that drives a $1550{\mu}m$ high speed VCSEL used in optical transceiver. To enhance the bandwidth of the optical transmitter, active feedback amplifier with negative capacitance compensation is exploited. We report a distinct improvement in bandwidth, voltage gain and operation stability at 2.5Gbps data rate in comparison with existing topology. The 4-CH chip consumes only 140 mW of DC power at a single 1.8V supply under the maximum modulation and bias currents, and occupies the die area of $850{\mu}m{\times}1,690{\mu}m$ excluding bonding pads.

EFFECT OF THE APPLICATION TIME OF SELF-ETCHING PRIMERS ON THE BONDING OF ENAMEL (자가부식 프라이머의 적용시간이 법랑질 접착에 미치는 영향)

  • Jin, Cheol-Hee;Cho, Young-Gon;Kim, Soo-Mee;Lee, Myeong-Seon
    • Restorative Dentistry and Endodontics
    • /
    • v.33 no.3
    • /
    • pp.224-234
    • /
    • 2008
  • The purpose of this study was to compare the normal and two times of application time of six self-etching primers applied to enamel using microshear bond strength (uSBS) test and the finding of scanning electronic microscope (SEM). Crown of sixty human molars were bisected mesiodistally and buccal and lingual enamel of crowns were partially exposed and polished with 600 grit SiC papers. They were divided into one of two equal groups subdivided into one of six equal groups (n = 10) by self-etching primer adhesives. After the same manufacture's adhesive resin and composites were bonded on the enamel surface of each group, the bonded specimens were subjected to uSBS testing and also observed under SEM. In conclusion, generally two times of primer application time increased the enamel uSBS, especially with the statistical increase of bond strength in adhesives involving high-pH primers.

The effect of casein phosphopeptide amorphous calcium phosphate on the in vitro shear bond strength of orthodontic brackets

  • Park, Sun-Youn;Cha, Jung-Yul;Kim, Kyoung-Nam;Hwang, Chung-Ju
    • The korean journal of orthodontics
    • /
    • v.43 no.1
    • /
    • pp.23-28
    • /
    • 2013
  • Objective: The purpose of this study was to evaluate the effect of casein phosphopeptide amorphous calcium phosphate (CPP-ACP) on the shear bond strength (SBS) of brackets bonded to non-demineralized teeth with either phosphoric acid etching or self-etching primer. Methods: Sixty human premolars were randomly assigned to 1 of 4 treatment groups (n = 15 each): phosphoric acid etching (group 1); self-etching primer (group 2); CPP-ACP for 2 weeks + phosphoric acid etching (group 3), and CPP-ACP for 2 weeks + self-etching primer (group 4). After bonding of the maxillary premolar metal brackets, specimens were subjected to shear forces in a testing machine. Scanning electron microscopy was used to observe etching patterns on the enamel surfaces of all teeth. A 2-way analysis of variance was used to test for effects of CPP-ACP and etching system on SBS. Results: Significantly higher mean SBSs were observed in groups subjected to phosphoric acid etching (i.e., groups 1 and 3; p < 0.05). On the other hand, SBSs did not appear to be influenced by CPP-ACP (i.e., groups 3 and 4; p > 0.05). We observed a uniform and clear etched pattern on the enamel surface of the phosphoric acid etching groups. Conclusions: CPP-ACP does not significantly affect the SBS of orthodontic brackets bonded to non-demineralized teeth, regardless of which adhesive method is used to bond the brackets.

Frontier Orbitals of Fifteen C20H17(OH)3 Regioisomers: Hybrid DFT B3LYP Study

  • Lee, Seol;Lee, Ji Young;Lee, Kee Hag
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.8
    • /
    • pp.2403-2407
    • /
    • 2013
  • The hybrid density-functional (B3LYP/6-31G(d,p)) method was used to analyze the substitution effect on the $C_{20}H_{20}$ cage based on calculation of the frontier orbitals of fifteen $C_{20}H_{17}(OH)_3$ derivatives. All substitution products were geometrically optimized without constraints and confirmed by frequency analysis. The results suggest that the cis-1 cis-1 cis-2 regioisomer is the most stable isomer, which implies that hydrogen bonding exerts a stronger effect on the relative energies of the trihydroxide than long-range interactions. Thus, this supports the experimental result in which the bisvicinal tetrol was of particular preparative-synthetic interest. While the LUMO of each of the $C_{20}H_{17}(OH)_3$ regioisomers was equivalently delocalized over the void within the cage, the HOMO was limitedly delocalized on substituents and carbons in close proximity to the substituents. The characteristics of the HOMO of each of the regioisomers vary based on the substitution sites. This indicates that the 15 regioisomers of each $C_{20}H_{20}$ trisubstituted derivative might undergo an entirely different set of characteristic chemical reactions with electrophilic reagents. The results further suggest that the penta-substituted OH groups on the surface of the fullerene cage are more likely to be localized on a pentagon than to be homogeneously delocalized.

Application of Pine Peroxidase to the Amperometric Determination of Hydrogen Peroxidase (과산화수소의 전류법적 정량을 위한 소나무 과산화효소의 활용)

  • Yoon, Kil-Joong
    • Journal of the Korean Chemical Society
    • /
    • v.57 no.3
    • /
    • pp.329-334
    • /
    • 2013
  • A pine needle-embedded graphite enzyme electrode, of which bonding agent is CSM rubber, was newly designed and its electrochemistry was studied based on the amperometry. It involved a ground green leaves of pine tree as a zymogen together with electrochemical mediator, ferrocene within the paste. The plots of ln($i(1-e^{nf{\eta}})$) vs. ${\eta}$ and Lineweaver-Burk at the low potential (-100 to -500 mV) showed good linearities indicating that the amperometric response is by the catalytic power of pine peroxidase. Electrochemical parameters obtained, symmetry factor (${\alpha}$, 0.17), limiting current ($i_1$, 1.99 $A/cm^2$), exchange current density ($i_0$, $5.86{\times}10^{-5}\;A/cm^2$), Michaelis constant ($K_M$, $1.68{\times}10^{-3}$ M) and many others showed that pine peroxidase discharges the role of catalyst quantitatively on the electrode surface. Those proved that the practical use of pine peroxidase is promising in place of the marketed.

Fabrication of Ru Nanoparticles Decorated Porous Carbon Nanofibers for Electrochemical Capacitors (Electrochemical capacitor를 위한 Ru 나노입자가 담지 된 다공성 탄소 나노섬유의 제조)

  • Lee, Yu-Jin;An, Geon-Hyoung;Ahn, Hyo-Jin
    • Korean Journal of Materials Research
    • /
    • v.24 no.1
    • /
    • pp.37-42
    • /
    • 2014
  • Well-distributed ruthenium (Ru) nanoparticles decorated on porous carbon nanofibers (CNFs) were synthesized using an electrospinning method and a reduction method for use in high-performance elctrochemical capacitors. The formation mechanisms including structural, morphological, and chemical bonding properties are demonstrated by means of field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS). To investigate the optimum amount of the Ru nanoparticles decorated on the porous CNFs, we controlled three different weight ratios (0 wt%, 20 wt%, and 40 wt%) of the Ru nanoparticles on the porous CNFs. For the case of 20 wt% Ru nanoparticles decorated on the porous CNFs, TEM results indicate that the Ru nanoparticles with ~2-4 nm size are uniformly distributed on the porous CNFs. In addition, 40 wt% Ru nanoparticles decorated on the porous CNFs exhibit agglomerated Ru nanoparticles, which causes low performance of electrodes in electrochemical capacitors. Thus, proper distribution of 20 wt% Ru nanoparticles decorated on the porous CNFs presents superior specific capacitance (~280.5 F/g at 10 mV/s) as compared to the 40 wt% Ru nanoparticles decorated on the porous CNFs and the only porous CNFs. This enhancement can be attributed to the synergistic effects of well-distributed Ru nanoparticles and porous CNF supports having high surface area.