DOI QR코드

DOI QR Code

Fabrication of Ru Nanoparticles Decorated Porous Carbon Nanofibers for Electrochemical Capacitors

Electrochemical capacitor를 위한 Ru 나노입자가 담지 된 다공성 탄소 나노섬유의 제조

  • Lee, Yu-Jin (Department of Materials Science and Engineering, Seoul National University of Science and Technology) ;
  • An, Geon-Hyoung (Department of Materials Science and Engineering, Seoul National University of Science and Technology) ;
  • Ahn, Hyo-Jin (Department of Materials Science and Engineering, Seoul National University of Science and Technology)
  • 이유진 (서울과학기술대학교 신소재공학과) ;
  • 안건형 (서울과학기술대학교 신소재공학과) ;
  • 안효진 (서울과학기술대학교 신소재공학과)
  • Received : 2013.12.17
  • Accepted : 2013.12.19
  • Published : 2014.01.27

Abstract

Well-distributed ruthenium (Ru) nanoparticles decorated on porous carbon nanofibers (CNFs) were synthesized using an electrospinning method and a reduction method for use in high-performance elctrochemical capacitors. The formation mechanisms including structural, morphological, and chemical bonding properties are demonstrated by means of field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS). To investigate the optimum amount of the Ru nanoparticles decorated on the porous CNFs, we controlled three different weight ratios (0 wt%, 20 wt%, and 40 wt%) of the Ru nanoparticles on the porous CNFs. For the case of 20 wt% Ru nanoparticles decorated on the porous CNFs, TEM results indicate that the Ru nanoparticles with ~2-4 nm size are uniformly distributed on the porous CNFs. In addition, 40 wt% Ru nanoparticles decorated on the porous CNFs exhibit agglomerated Ru nanoparticles, which causes low performance of electrodes in electrochemical capacitors. Thus, proper distribution of 20 wt% Ru nanoparticles decorated on the porous CNFs presents superior specific capacitance (~280.5 F/g at 10 mV/s) as compared to the 40 wt% Ru nanoparticles decorated on the porous CNFs and the only porous CNFs. This enhancement can be attributed to the synergistic effects of well-distributed Ru nanoparticles and porous CNF supports having high surface area.

Keywords

References

  1. Y. Zhang, H. Feng, X. Wu, L. Wang, A. Zhang, T. Xia, H. Dong, X. Li and L. Zhang, Int. J. Hydrogen Energy, 34, 4889 (2009). https://doi.org/10.1016/j.ijhydene.2009.04.005
  2. R. Kotz and M. Carlen, Electrochim. Acta, 45, 2483 (2000). https://doi.org/10.1016/S0013-4686(00)00354-6
  3. H-J Ahn and T-Y Seong, J. Alloys Comp., 478, L8 (2009). https://doi.org/10.1016/j.jallcom.2008.11.144
  4. S. Mitani, S-I Lee, K. Saito, Y. Korai and I. Mochida, Electrochim. Acta, 51, 5487 (2006). https://doi.org/10.1016/j.electacta.2006.02.040
  5. A. Lewandowski, P. Jakobczyk and M. Galinski, Electrochim. Acta, 86, 225 (2012). https://doi.org/10.1016/j.electacta.2012.05.060
  6. H-J Ahn, J. I. Sohn, Y-S Kim, H-S Shim, W. B. Kim and T-Y Seong, Electrochem. Commun., 8, 513 (2006). https://doi.org/10.1016/j.elecom.2006.01.018
  7. D-Y Youn, L. Tuller, T-S Hyun, D-K Choi and I-D Kim, J. Electrochem. Soc., 158, A970 (2011). https://doi.org/10.1149/1.3601852
  8. J. P. Zheng, P. J. Cygan and T. R. Jow, J. Electrochem. Soc., 142, 2699 (1995). https://doi.org/10.1149/1.2050077
  9. G-H An and H-J Ahn, ECS Solid State Lett., 2, M33 (2013).
  10. C-M Chuang, C-W Huang, H. Teng and J-M Ting, Compos. Sci. Technol., 72, 1524 (2012). https://doi.org/10.1016/j.compscitech.2012.05.024
  11. P. Lv, P. Zhang, Y. Feng, Y. Li and W. Feng, Electrochim. Acta, 78, 515 (2012). https://doi.org/10.1016/j.electacta.2012.06.085
  12. S. K. Nataraj, K. S. Yang and T. M. Aminabhavi, Prog. Polym. Sci., 37, 487 (2012). https://doi.org/10.1016/j.progpolymsci.2011.07.001
  13. B-S Lee, S-B Son, K-M Park, G. Lee, K. H. Oh, S-H Lee and W-R Yu, ACS Appl. Mater. Interfaces, 4, 6702 (2012). https://doi.org/10.1021/am301873d
  14. H-J Ahn, W. J. Moon, T-Y Seong and D. Wang, Electrochem. Commun., 11, 635 (2009). https://doi.org/10.1016/j.elecom.2008.12.056
  15. J. Marwan, T. Addou and D. Belanger, Chem. Mater., 17, 2395 (2005). https://doi.org/10.1021/cm047871i
  16. C. Bock, C. Paquet, M. Couillard, G. A. Botton and B. R. Macdougall, J. Am. Chem. Soc., 126, 8028 (2004). https://doi.org/10.1021/ja0495819
  17. A. K. Shukla, A. Banerjee, M. K. Ravikumar and A. Jalajakshi, Electrochim. Acta, 84, 165 (2012). https://doi.org/10.1016/j.electacta.2012.03.059
  18. R. Vellacheri, V. K. Pillai and S. Kurungot, Nanoscale, 4, 890 (2012). https://doi.org/10.1039/c2nr11479h
  19. P. Perret, Z. Khani, T. Brousse, D. Belanger and D. Guay, Electrochim. Acta, 56, 8122 (2011). https://doi.org/10.1016/j.electacta.2011.05.125

Cited by

  1. Fabrication of WS2-W-WC Embedded Carbon Nanofiber Composites for Supercapacitors vol.22, pp.2, 2015, https://doi.org/10.4150/KPMI.2015.22.2.116
  2. Electrospun Nanomaterials for Supercapacitor Electrodes: Designed Architectures and Electrochemical Performance vol.7, pp.2, 2016, https://doi.org/10.1002/aenm.201601301