DOI QR코드

DOI QR Code

Preparation and Characterization of Cerium Doped Titanium Dioxide Nano Powder for Photocatalyst

  • Ndinda, Euphracia (Department of Advanced Materials Engineering, Kangwon National University) ;
  • Park, Hyun (Department of Advanced Materials Engineering, Kangwon National University) ;
  • Kim, Kyung Nam (Department of Advanced Materials Engineering, Kangwon National University)
  • Received : 2013.11.11
  • Accepted : 2013.12.10
  • Published : 2014.01.27

Abstract

This study was aimed at synthesizing and characterizing cerium-doped titania. Cerium-doped anatase titania powders were prepared by sol-gel process, with ammonium (IV) nitrate and titanium (IV) butoxide as the raw materials. The characteristics of pure $TiO_2$ and cerium-doped $TiO_2$ were investigated by XRD, TG/DTA, FE-SEM, and UV-vis spectroscopy. The results of this study show that anatase type of $TiO_2$ was obtained in as-prepared and calcined $TiO_2$ and Ce-$TiO_2$ powder. A DTA curve was also observed as the crystallization temperature decreased with increasing cerium contents. We found that the crystallite size of the obtained anatase particles decreased from 55 nm to 25 nm and the particle size decreased with increasing cerium contents. Moreover, UV-vis spectra showed that anatase titania powders with various cerium contents effectively extend the light absorption properties to the visible region.

Keywords

References

  1. U. G. Akpan, B. H. Hameed, J. Hazar. Mat., 170, 520 (2009). https://doi.org/10.1016/j.jhazmat.2009.05.039
  2. C. H. Wei, X. H. Tang, J. R. Liang, S. Y. Tang, J. Environ. Sci., 19(1), 90 (2007). https://doi.org/10.1016/S1001-0742(07)60015-1
  3. U. G. Akpan, B. H. Hameed, Applied catalysis A: General, 375(1), 1 (2010). https://doi.org/10.1016/j.apcata.2009.12.023
  4. A. W. Xu, Y. Gao, and H. Q. Liu,J. Catalysis, 207(2), 151 (2002). https://doi.org/10.1006/jcat.2002.3539
  5. A. Fujishima, T. N. Rao, D. A. Tryk, J. Photochem. Photobiol. C, photochem. Rev., 1(1), 1 (2000). https://doi.org/10.1016/S1389-5567(00)00002-2
  6. Q. Yuan, H. H. Duan, L. L. Li, L. D. Sun, Y. W. Zhang, C. H. Yan, J. Colloid and Inter. Sci., 335(2), 151 (2009). https://doi.org/10.1016/j.jcis.2009.04.007
  7. D.Y. Shin, K.N. Kim, J. Kor. Ceram. Soc., 45(6), 345 (2008). https://doi.org/10.4191/KCERS.2008.45.6.345
  8. J. J. Zhu, J. Xie, M. Chen, D. Jiang, D. Wu, Colloids and Surfaces A: Physiochem. Eng. Aspects, 335, 178 (2010).
  9. I. E. Grey, N. C. Wilson, J. Solid State Chem., 180(2), 670 (2007). https://doi.org/10.1016/j.jssc.2006.11.028
  10. T. Tong, J. Zhang, B. Tian, F. Chen, D. He, M. Anpo, J. Colloid and Inter. Sci., 315(1), 382 (2007). https://doi.org/10.1016/j.jcis.2007.06.051
  11. N. Hafizah, I. Sopyan, Inter. J. Photoenergy, 2009, 1 (2009).
  12. G. Li, C. Liu, Y. Liu, App. Sur. Sci., 253, 2481 (2006). https://doi.org/10.1016/j.apsusc.2006.05.002
  13. A. Fujishima, X. Zhang, D. A. Tryk, Sur. Sci. Reports, 63, 515 (2008). https://doi.org/10.1016/j.surfrep.2008.10.001
  14. D. Y. Shin, K. N. Kim, Mat. Sci. Forum, 622, 679 (2009).
  15. D. Y. Shin, G. Cao, K. N. Kim, Current Applied Physics, 11, 309 (2011). https://doi.org/10.1016/j.cap.2010.11.028
  16. E. M. Ndinda, Master thesis (in Korea), Kangwon Uni., (2011).
  17. Adrian M. T. Silva, Claudia G. Silva, Goran Drazic, Joaquim L. Faria, Catalysis Today, 144(1-2), 13 (2009). https://doi.org/10.1016/j.cattod.2009.02.022
  18. Y. H. Xu, Z. X. Zeng, J. Molecular Catalysis A: Chem., 279(1), 77 (2008). https://doi.org/10.1016/j.molcata.2007.09.016
  19. Q. Z. Yan, X. T. Su, Z. Y. Huang, C. C. Ge, J. Euro. Ceram. Soc., 26(6), 915 (2006). https://doi.org/10.1016/j.jeurceramsoc.2004.11.017

Cited by

  1. Investigations on the structural, mechanical, thermal, and electrical properties of Ce-doped TiO2/poly(n-butyl methacrylate) nanocomposites pp.1588-2926, 2018, https://doi.org/10.1007/s10973-018-7285-9