• Title/Summary/Keyword: bonding surface

Search Result 1,571, Processing Time 0.034 seconds

Fabrication and Electrochemical Characterization of Carbon Fluoride-based Lithium-Ion Primary Batteries with Improved Rate Performance Using Oxygen Plasma (산소 플라즈마를 이용하여 율속 성능이 개선된 불화탄소 기반 리튬 일차전지의 제조 및 전기 화학적 특성)

  • Seoyeong Cheon;Naeun Ha;Chaehun Lim;Seongjae Myeong;In Woo Lee;Young-Seak Lee
    • Applied Chemistry for Engineering
    • /
    • v.34 no.5
    • /
    • pp.534-540
    • /
    • 2023
  • The high-rate performance is limited by several factors, such as polarization generation, low electrical conductivity, low surface energy, and low electrolyte permeability of CFX, which is widely used as a cathode active material in the lithium primary battery. Therefore, in this study, we aimed to improve the battery performance by using carbon fluoride modified by surface treatment using oxygen plasma as a cathode for lithium primary batteries. Through XPS and XRD analysis, changes in the surface chemical characteristics and crystal structure of CFX modified by oxygen plasma treatment were analyzed, and accordingly, the electrochemical characteristics of lithium-ion primary batteries were analyzed and discussed. As a result, the highest number of semi-ionic C-F bonds were formed under the oxygen plasma treatment condition (7.5 minutes) with the lowest fluorine to carbon (F/C) ratio. In addition, the primary cell prepared under this condition using carbon fluoride as the active material of the cathode showed the highest 3 F/C(3 C rate-performance) rate-performance and maintained a relatively high capacity (550 mAh/g) even at high rates. In this study, it was possible to produce lithium primary batteries with high-rate performance by adjusting the fluorine contents of carbon fluoride and the type of carbon-fluorine bonding through oxygen plasma treatment.

Measuring and Correcting The Compressive Axial Strain of Concrete Cylinders Retrofitted by External Jackets (외부자켓에 의해 보강된 콘크리트 압축시편의 압축변형률 측정 및 보정)

  • Choi, Eun-soo;Lee, Young-Geun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.13 no.2 s.54
    • /
    • pp.215-222
    • /
    • 2009
  • In this study, steel and FRP jackets are used to confine concrete cylinders. The FRP jacket behaviors compositely with concrete since there is bonding between them. However, the used steel jacket in this study do not behavior compositely with concrete since there is not an adhesive between them. The steel jackets are attached by external forces and the welding. This study suggests the measuring method of the axial strain for the confined concrete cylinders showing noncomposite behavior with the jackets and the correcting method of the measured strain for the composite-behavior jackets. For the noncomposite-behavior steel jacket, the axial strain of the steel surface does not represent the axial strain of the concrete inside. Also, a compressormeter can not be used. Thus, the two rigid plates at the top and bottom of a cylinder are placed and the distance of the two plates are measured and used for estimating the axial strain of the concrete. For the composite-behavior FRP jacket, the vertical strain measured on the FRP surface can be used for estimating the axial strain of the concrete. However, the vertical strain on the FRP surface contains the tensile strain due to the bulge of the concrete and, thus, the tensile strain should be corrected from the vertical strain. The corrected verticals strains compared with the measured strain or a existing constitute model; the result is satisfactory. The uncorrected stress-strain curves have the potential to under estimate the ductile behavior and the energy-dissipation-capacity of the composite-behavior FRP jackets.

THE MORPHOLOGICAL OBSERVATION OF HUMAN GINGIVAL FIBROBLASTS ATTACHMENT AND SPREADING ON THE MECHANICAL TREATED TITANIUM PLASMA SPRAYED IMPLANT SURFACE (기계적 표면 처리된 TITANIUM PLASMA SPRAYED IMPLANT에 대한 치은섬유아세포전개양상의 형태학적 관찰)

  • Whang, Yun-Hi;Lee, Jae-Mok;Suh, Jo-Young
    • Journal of Periodontal and Implant Science
    • /
    • v.25 no.3
    • /
    • pp.741-755
    • /
    • 1995
  • Currently titanium is the material of choice for implants because of its biological acceptance. This high degree of biocompatibility is thought to result, in part, from the protective and stable oxide layer that presumably aids in the bonding of the extracellular matrix at the implant-tissue interface. Endosseous dental implants are interfaced with bone, connective tissue, and epithelium when implanted into the jaw bone. The soft tissue interface including connective tissue and epithelium is one of the most critical factors in the determination of implant maintenance and prognosis. For maintenance of failing or failed implants, it is essential to treat the implant fixture surface to remove bacterial endotoxins and make a surface tolerated by surrounding soft and hard tissues. In this study, the effect of mechanical treatment on titanium plasma sprayed implant on adhesiveness and proliferation of human gingival fibroblasts and changed surface characteristics were studied. titanium plasma sprayed discs manufactured by Friedrichsfeld company were treated with loaw speed stone bur, a rubber point and a jetpolisher. Its surface components were analyzed with Energy dispersive X-ray spectroscopy to evaluate whether the surface characteristics were altered or not. To observe the spreading pattern of the human gingival fibroblasts which attached to the all specimens author used the scanning electron microscope. The results were as follows : Pure titanium and plasma sprayed titanium, stone polished titanium showed titanium peak and small amout of aluminum, so there was no alteration on surface characteristics. Under the scanning electron microscopic examination in the initial attachment of human gingival fibroblast, there was a slight enhancement in pure titanium, stone polished titanium than plasma sprayed titanium. After 6 hours, the pure titanium and stone polished titanium showed human gingival fibroblasts were elongated and connected with numerous processes. Human gingival fibroblasts were more intimately attached on the pure titanium discs than on the other discs. The human gingival fibroblasts attached on the plasma sprayed titanium by thin and elongated processes. After 24 hours, the human gingival fibroblasts connected with each other via numerous processes and compeletly covered the pure titanium and stone polshed titanium discs. Human gingival fibroblasts had multiple point contacts with more long and thin lamellopodia and showed a little bare surface on plasma sprayed titanium discs.

  • PDF

Surface characteristics and stability of implants treated with alkali and heat (알칼리와 열처리에 의한 임플란트의 표면 특성 및 골유착 안정성에 관한 연구)

  • Song, Yun-Seok;Cho, In-Ho
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.46 no.5
    • /
    • pp.490-499
    • /
    • 2008
  • Statement of problem: Bioactive materials must have the ability to spontaneously form a bone like apatite layer on their surface and induce direct biochemical bonding to bone. A simple chemical treatment via alkali and heat has been revealed to induce bioactivity in titanium. Purpose: The purpose of this study was to evaluate the surface characteristics and stability of alkali and heat treated implants. Material and methods: Specimens were divided into three groups; group 1 was the control group with machined surface implants, groups 2 and 3 were treated with alkali solutions and heat treated in the atmosphere and vacuum conditions respectively. The surface characteristics were observed with FESEM, XPS, TF-XRD and AFM. Stability was evaluated with the resonance frequency analysis, periotest and removal torque values. One-way ANOVA and Duncan test were used for statistical analysis. Results: 1. Groups treated with alkali and heat showed similar characteristics. Groups 2 and 3 showed high compositions of Na ions on the surface with sub-micron sized pores compared to group 1. Group 2 showed mixed compositions of anatase and rutile with superior contents of rutile. 2. Resonance frequency analysis : The ISQ of group 2 showed significantly higher values than that of groups 1 and 3 at 12 weeks. The ISQ of groups 1 and 2 showed significant increase after 4 weeks, and the ISQ of group 3 increased significantly after 2 and 4 weeks respectively (P < .05). 3. Periotest: The PTV of groups 1 and 2 showed significant decrease after 4 weeks, and the PTV of group 3 showed significant decrease after 2 and 4 weeks respectively (P < .05). 4. Removal torque analysis: The removal torque value of group 2 was significantly higher than those of groups 1 and 3 at 2, 4 and 8 weeks. The removal torque values of groups 1 and 3 showed increase at 4 and 12 weeks, but the removal torque value of group 2 showed increase after 4 weeks (P < .05). Conclusion: An oxide layer with appropriate crystal structure and amorphous sodium titanate layer can be obtained on titanium implants through alkali and heat treatment in the atmosphere, and even alkali and heat treatment in vacuum conditions, provided a bioactive surface containing sodium. These surface layers can be considered to be effective for enhancement of osseointegration and reduction of healing period for implant treatment.

A histomorphometric study on the effect of surface treatment on the osseointegration (티타늄 임플란트의 표면처리가 골유착에 미치는 영향에 관한 조직형태계측학적 연구)

  • Choi, Woong-Jae;Cho, In-Ho
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.47 no.4
    • /
    • pp.445-456
    • /
    • 2009
  • Statement of problem: Many studies have been conducted to improve the primary stability of implants by providing bioactive surfaces via surface treatments. Increase of surface roughness may increase osteoblast activity and promote stronger bonding between bone and implant surface and it has been reported that bioactive surface or titanium can be obtained through alkali and heat treatment. Purpose: The purpose of this study was to evaluate the stability of alkali and heat treated implants via histomorphometric analysis. Material and methods: Specimens were divided into three groups; group 1 was the control group with machined surface, the other groups were treated for 24 hours in 5 M NaOH solution and heat treated for 1 hour at $600^{\circ}C$ in the atmosphere (group 2) and vacuum (group 3) conditions respectively. Surface characteristics were analyzed and fixtures were implanted into rabbits. The specimens were histologically and histomorphometrically compared according to healing periods and change in bone composition were analyzed with EPMA (Electron Probe Micro Analyzer). Results: 1. Groups treated with alkali and heat showed increase of oxidization layer and Na ions. Groups 2 which was heat treated in atmosphere showed significant increase of surface roughness (P<.05). 2. Histomorphometric analysis showed significant increase in BIC (bone to implant contact) according to increase in healing period and there was significant increases in groups 2 and 3 (P<.05). 3. BA(bone area) ratio showed similar results as contact ratio, but according to statistical analysis there was significant increase according to increase in healing period in group 2 only (P<.05). 4. EPMA analysis revealed no difference in gradation of bone composition of K, P, Ca, Ti in surrounding bone of implants according to healing periods but groups 2 and 3 showed increase of Ca and P in the initial stages. Conclusion: From the results above, it can be considered that alkali and heat treated implants in the atmosphere have advantages in osseointegration in early stages and may decrease the time interval between implantation and functional adaptation.

The study of shear bond strength of a self-adhesive resin luting cement to dentin (상아질에 대한 자가 접착 레진 시멘트의 전단결합강도에 관한 연구)

  • In, Hee-Sun;Park, Jong-Il;Choi, Jong-In;Cho, Hye-Won;Dong, Jin-Keun
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.46 no.5
    • /
    • pp.535-543
    • /
    • 2008
  • Purpose: The objective of this study was to compare the bonding characteristics of a new self-adhesive resin cement to dentin, which does not require bonding and conditioning procedure of the tooth surface, and conventional resin cement. The effect of phosphoric acid etching prior to application of self-adhesive resin cement on the shear bond strength was also evaluated. Material and methods: Fortyfive non-carious human adult molars extracted within 6 months were embedded in chemically cured acrylic resin. The teeth were ground with a series of SiC-papers ending with 800 grit until the flat dentin surfaces of the teeth were exposed. The teeth were randomly divided into 3 experimental groups. In group 1, self-adhesive resin cement, RelyX Unicem (3M ESPE, Seefeld, Germany) was bonded without any conditioning of teeth. In group 2, RelyX Unicem was bonded to teeth after phosphoric acid etching. For group 3, Syntac Primer (Ivoclar Vivadent AG, Schaan, Liechtenstein) was applied to the teeth before Syntac adhesive (Ivoclar Vivadent AG, Schaan, Liechtenstein) and Helibond (Ivoclar Vivadent AG, Schaan, Liechtenstein) followed by conventional resin cement, Variolink II (Ivoclar Vivadent AG, Schaan, Liechtenstein). To make a shear bond strength test model, a plastic tuble (3 mm diameter, 3 mm height) was applied to the dentin surfaces at a right angle and filled it with respective resin cement, and light-polymerized for 40 seconds. All the specimens were stored in distilled water at $37^{\circ}C$ for 24 hours before test. Universal Testing Machine (Z020, Zwick, Ulm, Germany) at a cross head speed of 1 mm/min was used to evaluate the shear bond strength. The failure sites were inspected under a magnifier and Scanning Electron Microscope. The data was analyzed with One way ANOVA and Scheffe test at ${\alpha}$= 0.05. Results: (1) The shear bond strengths to dentin of RelyX Unicem was not significantly different from those of Variolink II/Syntac. (2) Phosphoric acid etching lowered the shear bond strength of RelyX Unicem significantly. (3) Most of RelyX Unicem and Variolink II showed mixed fractures, while all the specimens of RelyX Unicem with phosphoric acid etching demonstrated adhesive failure between dentin and resin cement. Conclusion: Shear bond strength to dentin of self-adhesive resin cement is not significantly different from conventional resin cement, and phosphoric acid etching decrease the shear bond strength to dentin of self-adhesive resin cement.

Ni/Au Electroless Plating for Solder Bump Formation in Flip Chip (Flip Chip의 Solder Bump 형성을 위한 Ni/Au 무전해 도금 공정 연구)

  • Jo, Min-Gyo;O, Mu-Hyeong;Lee, Won-Hae;Park, Jong-Wan
    • Korean Journal of Materials Research
    • /
    • v.6 no.7
    • /
    • pp.700-708
    • /
    • 1996
  • Electroless plating technique was utilized to flip chip bonding to improve surface mount characteristics. Each step of plating procedure was studied in terms pf pH, plating temperature and plating time. Al patterned 4 inch Si wafers were used as substrstes and zincate was used as an activation solution. Heat treatment was carried out for all the specimens in the temperature range from room temperature to $400^{\circ}C$ for $30^{\circ}C$ minutes in a vacuum furnace. Homogeneous distribution of Zn particles of size was obtained by the zincate treatment with pH 13 ~ 13.5, solution concentration of 15 ~ 25% at room temperature. The plating rates for both Ni-P and Au electroless plating steps increased with increasing the plating temperature and pH. The main crystallization planes of the plated Au were found to be (111) a pH 7 and (200) and (111) at pH 9 independent of the annealing temperature.

  • PDF

A STUDY ON THE RELATIVE SHEAR BOND STRENGTH OF COMPOSITE RESIN TO COMPOMERS (컴포머에 대한 복합레진의 전단결합강도에 관한 연구)

  • Jeong, Song-Ran;Choi, Nam-Ki;Yang, Kyu-Ho;Kim, Seon-Mi;Song, Ho-Jun
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.32 no.3
    • /
    • pp.509-516
    • /
    • 2005
  • For the purpose of comparing the bond strengths of compomers to composite resin, composite Z250, and two polyacid modified composite resin, Dyract AP and F2000, were selected and investigated using universal testing machine for measuring the shear bond strengths. Additionally, the failure modes were examined by observing the fractured surfaces of each specimen. The following results were obtained. 1. The shear bond strength of Dyract AP to Z250 were higher than those of F2000, but there was no statistically significant difference between group 1 and group 3(p>0.05), and groups using fresh compomers showed higher bond strength than those using aged compomers(p<0.05). 2. After measuring the shear bond strength of each group, it was highest in group 5 and was lowest in group 9(p<0.05). 3. Although there was no statistically significant difference, groups treated with thermocycling showed lower bond strengths than those of non-thermocycling groups. 4. Overall compomer/composite resin failures were adhesive. Cohesive failures occurred mainly in groups using bonding agent. Based on these results, the application of a bonding agent on fresh polyacid-modified resin composite increases the bond strength between polyacid-modified resin composite and composite resin. Additionally, the surface of aged polyacid-modified resin composite has to be roughened mechanically and a bonding agent has to be used in combination with composite resin.

  • PDF

A STUDY ON FRACTURAL BEHAVIOR OF DENTIN-RESIN INTERFACE (상아질-복합레진 접착계면의 파괴거동에 대한 연구)

  • Ryu, Gil-Joo;Choi, Gi-Woon;Park, Sang-Jin;Choi, Kyung-Kyu
    • Restorative Dentistry and Endodontics
    • /
    • v.32 no.3
    • /
    • pp.208-221
    • /
    • 2007
  • The fracture toughness test is believed as a clinically relevant method for assessing the fracture resistance of the dentinal restoratives. The objectives of this study were to measure the fracture toughness $(K_{1C})$ and microtensile bond strength of dentin-resin composite interface and compare their relationship for their use in evaluation of the integrity of the dentin-resin bond. A minimum of six short-rod specimens for fracture toughness test and fifteen specimens for microtensile bond strength test was fabricated for each group of materials used. After all specimens storing for 24 hours in distilled water at $37^{\circ}C$, they were tensile-loaded with an EZ tester universal testing machin. Statistical analysis was performed using ANOVA and Tukey's test at the 95% confidence level, Pearson's coefficient was used to verify the correlation between the mean of fracture toughness and microtensile bond strength. FE-SEM was employed on fractured surface to describe the crack propagation. Fracture toughness value of Clearfil SE Bond (SE) was the highest, followed by Adper Single Bond 2 (SB), OptiBond Solo (OB), ONE-STEP PLUS (0S), ScotchBond Multi-purpose (SM) and there was significant difference between SE and other 4 groups (p < 0.05). There were, however, no significant difference among SB, OB, OS, SM (p > 0.05). Microtensile bond strength of SE was the highest, followed by SB, OB, SM, OS and OS only showed significant lower value (p < 0.05). There was no correlation between fracture toughness and microtensile bond strength values. FE-SEM examination revealed that dentin bonding agent showed different film thickness and different failure pattern according to the film thickness. From the limited results of this study, it was noted that there was statistically no correlation between K1C and ${\mu}TBS$. We can conclude that for obtaining the reliability of bond strength test of dentin bonding agent, we must pay more attention to the test procedure and its profound scrutiny.

EFFECT OF FILM THICKNESS OF RESIN CEMENT ON BONDING EFFICIENCY IN INDIRECT COMPOSITE RESTORATION (레진 시멘트의 film thickness가 간접 복합 레진 수복물의 접착 효율에 미치는 영향에 관한 연구)

  • Lee, Sang-Hyuck;Choi, Gi-Woon;Choi, Kyung-Kyu
    • Restorative Dentistry and Endodontics
    • /
    • v.35 no.2
    • /
    • pp.69-79
    • /
    • 2010
  • The purpose of this study was to evaluate the effect of film thickness of various resin cements on bonding efficiency in indirect composite restoration by measurement of microtensile bond strength, polymerization shrinkage, flexural strength and modulus, fractographic FE-SEM analysis. Experimental groups were divided according to film thickness (< $50\;{\mu}m$-control, $50\;{\mu}m$-T50, $100\;{\mu}m$-T100, $150\;{\mu}m$-T150) using composite- based resin cements (Variolink II, Duo-Link) and adhesive-based resin cements (Panavia F, Rely X Unicem). The data was analyzed using ANOVA and Duncan's multiple comparison test (p < 0.05). The results were as follows ; 1. Variolink II showed higher microtensile bond strength than that of adhesive-based resin cements in all film thickness (p < 0.05) but Duo-Link did not show significant difference except control group (p > 0.05). 2. Microtensile bond strength of composite-based resin cements were decreased significantly according to increasing film thickness (p < 0.05) but adhesive-based resin cements did not show significant difference among film thickness (p > 0.05). 3. Panavia F showed significantly lower polymerization shrinkage than other resin cements (p < 0.05). 4. Composite-based resin cements showed significantly higher flexural strength and modulus than adhesive-based resin cements (p < 0.05). 5. FE-SEM examination showed uniform adhesive layer and well developed resin tags in composite-based resin cements but unclear adhesive layer and poorly developed resin tags in adhesive-based resin cements. In debonded surface examination, composite-based resin cements showed mixed failures but adhesive-based resin cements showed adhesive failures.