• Title/Summary/Keyword: bolted joint

Search Result 157, Processing Time 0.02 seconds

Wireless Impedance-Based SUM for Bolted Connections via Multiple PZT-Interfaces

  • Nguyen, Khac-Duy;Kim, Jeong-Tae
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.31 no.3
    • /
    • pp.246-259
    • /
    • 2011
  • This study presents a structural health monitoring (SHM) method for bolted connections by using multi-channel wireless impedance sensor nodes and multiple PZT-interfaces. To achieve the objective, the following approaches are implemented. Firstly, a PZT-interface is designed to monitor bolt loosening in bolted connection based on variation of electro-mechanical(EM) impedance signatures. Secondly, a wireless impedance sensor node is designed for autonomous, cost-efficient and multi-channel monitoring. For the sensor platform, Imote2 is selected on the basis of its high operating speed, low power requirement and large storage memory. Finally, the performance of the wireless sensor node and the PZT-interfaces is experimentally evaluated for a bolt-connection model Damage monitoring method using root mean square deviation(RMSD) index of EM impedance signatures is utilized to estimate the strength of the bolted joint.

가중함수법에 의한 볼트 체결부 균열의 임계 경사각 결정에 관한 연구

  • Heo, Seong-Pil;Yang, Won-Ho;Jeong, Gi-Hyeon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.9 s.180
    • /
    • pp.2344-2352
    • /
    • 2000
  • Mechanical joints such as bolted or riveted joints are widely used in mechanical components. The reliable determination of the stress intensity factors for cracks in bolted joints is needed to evaluate the safety and fatigue life of them. The weight function method is an efficient technique to calculate the stress intensity factors for various loading conditions because only the stress analysis of an uncracked model is required. In this paper the mixed-mode stress intensity factors for cracks in bolted joints are obtained by weight function method, in which the coefficients of weight function are determined by finite element analyses for reference loadings. Critical inclined angle that mode I stress intensity factor becomes maximum is determined and the effects of crack length and the magnitude of clearance on critical inclined angle are investigated.

Application of Weight Function Method to the Mixed-Mode Stress Intensity Factor Analysis of Cracks in Bolted Joints (볼트 체결부 균열의 혼합모드 응력확대계수 해석에 대한 가중함수법의 적용)

  • Heo, Sung-Pil;Yang, Won-Ho;Chung, Ki-Hyun;Cho, Myoung-Rae;Hyun, Cheol-Seung
    • Proceedings of the KSME Conference
    • /
    • 2000.04a
    • /
    • pp.212-217
    • /
    • 2000
  • The reliable determination of the stress intensity factors for cracks in bolted Joints is needed to evaluate the safety and fatigue life of them widely used in mechanical components. The weight function method is an efficient technique to calculate the stress intensity factors for various loading conditions using the stresses of an uncracked model. In this paper the mixed-mode stress intensity factors for cracks in bolted joints are obtained by weight function method, in which the coefficients of weight function are determined by finite element analyses far reference loadings. The effects of the magnitude of clearance and factional coefficient on the stress intensity factors are investigated.

  • PDF

Investigation of semi-rigid bolted beam connections on prefabricated frame joints

  • Irtem, E.;Turker, K.
    • Structural Engineering and Mechanics
    • /
    • v.12 no.4
    • /
    • pp.397-408
    • /
    • 2001
  • Bolted connections are used commonly in the precast reinforced concrete structures. In such structures, to perform structural analysis, behaviour of connections must be determined. In this study, elastic rotation stiffness of semi-rigid bolted beam connections, applied in industrial precast structures, are determined by finite element methods. The results obtained from numerical solutions are compared with an experimental study carried out for the same connections. Furthermore, stress distributions of the connection zone are determined and a reinforcement scheme is proposed. Thus, a more appropriate reinforcement arrangement for the connection zone is enabled. The connection joint of the prefabricated frame is described as rigid, hinged or elastic, and a static analysis of the frame system is performed for each case. Values of bending moments and displacements obtained from the three solutions are compared and the effects of elastic connection are discussed.

Dynamic Modeling of One-Dimensional Structural Joints (1차원 구조물 결합부의 동적모델링)

  • 강태호;김주홍;이우식;박철희
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1998.04a
    • /
    • pp.413-418
    • /
    • 1998
  • In this paper, a dynamic modeling approach is introduced to identify the dynamic characteristics of the structural/mechanical joints within an one-dimensional structure. A structural joint is represented by the four-pole parameters and the four-pole parameters are determined from the measured frequency response functions by using the spectral element method. As the illustrative examples, a cantilevered beam and a clamped-clamped beam, each consists of two beams connected by a bolted joint, are investigated to evaluate the present modeling approach. It is found that the dynamic responses predicted by using the identified four-pole parameters for the bolted joint are well agreed with the dynamic responses measured up to high frequency.

  • PDF

Mechanical Characteristics of High Tension Bolted Joint Connections using Shear Ring (전단링을 사용한 고장력볼트 이음부의 역학적 특성에 관한 연구)

  • Lee, Seung Yong;Park, Young Hoon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.2A
    • /
    • pp.327-338
    • /
    • 2006
  • Friction type high tension bolted joints is one of the most common steel structure connections and requires significant concerns on axial force of the bolts. However, its high shear capacity is not appropriately considered in design and hence the number of bolts is over-designed than actually required. It is primarily due to a slip-load-based design method. This study, therefore, suggests a new technology of connection using a shear ring, which may reduce the shortcomings from the friction-typed high tension bolted joints and maximize the advantages from the bearing-typed joints. Experimental and numerical studies were performed to compare the capacity of the suggested method with traditional high tension bolted joints. From the results, it is known that the suggested connections has higher bearing capacity than friction-typed high tension bolted joints due to the higher shear resistance from the ring. For further study, it may be necessary to investigate on design parameters including the depth of shear ring, for increased connection capacity.

Simulator of Accuracy Prediction for Developing Machine Structures (기계장비의 구조 특성 예측 시뮬레이터)

  • Lee, Chan-Hong;Ha, Tae-Ho;Lee, Jae-Hak;Kim, Yang-Jin
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.3
    • /
    • pp.265-274
    • /
    • 2011
  • This paper presents current state of the prediction simulator of structural characteristics of machinery equipment accuracy. Developed accuracy prediction simulator proceeds and estimates the structural analysis between the designer and simulator through the internet for convenience of designer. 3D CAD model which is input to the accuracy prediction simulator would simplified by the process of removing the small hole, fillet and chamfer. And the structural surface joints would be presented as the spring elements and damping elements for the structural analysis. The structural analysis of machinery equipment joints, containing rotary motion unit, linear motion unit, mounting device and bolted joint, are presented using Finite Element Method and their experiment. Finally, a general method is presented to tune the static stiffness at a rotation joint considering the whole machinery equipment system by interactive use of Finite Element Method and static load experiment.

The Friction Characteristics on the Loosening of Bolted Joints (볼트 결합부 풀림에 관한 마찰 특성)

  • Park, Tae-Won;Shin, Gwi-Su;Jiang, Yanyao
    • Journal of the Korean Society of Safety
    • /
    • v.19 no.1
    • /
    • pp.12-17
    • /
    • 2004
  • By using an experimental approach recently developed to determine the torque-tension relationship for bearing frictional characteristics of several typical bolted joints were studied. The experimental approach allows the direct determination of the bearing friction between the nut and its bearing surface. Detailed friction studies were made on the influences of the size and shape of the hole, the use of a slot in a bolted joint, contact area and position, and other factors such as turning speed, coating, and the use of wax on the bearing surface. The contact area and position of the washer have a marginal effect on the bearing friction. The organic coating on the nuts reduces the bearing friction significantly. Nuts with organic coating over a washer with zinc finish provide the smallest and the most consistent bearing friction. The results from the experimental investigation will be helpful for the better design of bolted joints bearing friction. The results from the experimental investigation Will be helpful for the better design of bolted joints.

A Study on Dynamic Modelling of Joints in Plate Structure (평판구조 결합부의 동적 모델링에 관한 연구)

  • 이장무;이재운;성명호
    • Journal of KSNVE
    • /
    • v.2 no.1
    • /
    • pp.61-66
    • /
    • 1992
  • In general, structures have various joints such as bonded joint, bolted joint, bearing joint and welded joint. Dynamic modelling of such joints has been the current topic of interest. In this study, the dynamic modelling of plate structures with bonded joint was investigated by using modal testing, sensitivity analysis and condensation-inverse condensation method of FEM. A proper modelling procedure was proposed and the validity was verified.

  • PDF

Stiffness Determination Of A Bolted Member Using Optimization Technique (최적화 기법을 이용한 보울트 체결체의 강성 평가)

  • 김태완;조덕상;성기광;손용수;박성호
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1993.04a
    • /
    • pp.151-157
    • /
    • 1993
  • In this paper a useful method on evaluating the joint stiffness of bolted memeber was introduced using optimization technique on the basis of Finite Element Method. A finite element model having one directional gap element at bo undary area was introduced to compensate the prying force in jointed members which might caused by geometrical configuration of members. Results showed a good aggrement with classical method in certain range and will be available to definine the design margine of pre-load design.

  • PDF