• Title/Summary/Keyword: bolted joint

Search Result 157, Processing Time 0.024 seconds

Bolted joints for single-layer structures: numerical analysis of the bending behaviour

  • Lopez-Arancibia, A.;Altuna-Zugasti, A.M.;Aldasoro, H. Aizpurua;Pradera-Mallabiabarrena, A.
    • Structural Engineering and Mechanics
    • /
    • v.56 no.3
    • /
    • pp.355-367
    • /
    • 2015
  • This paper deals with a new designed joint system for single-layer spatial structures. As the stability of these structures is greatly influenced by the joint behaviour, the aim of this paper is the characterization of the joint response in bending through Finite Element Method (FEM) analysis using ABAQUS. The behaviour of the joints studied here was influenced by many geometrical factors, such as bolts and plate sizes, distance between bolts and end-plate thickness. The study comprised five models of joints with different values of those parameters. The numerical results were compared to the results of previous experimental tests and the agreement was good enough. The differences between the numerical and experimental initial stiffness are attributed to the simplifications introduced when modelling the bolt threads as well as the presence of residual stresses in the test specimens.

An Experimental Study on the Effects of Bolted Connection Type on the Block Shear Failure (볼트이음방식의 블록전단파괴에 미치는 영향에 대한 실험적 연구)

  • Lee, Chin-Ok;Park, Gyung-Hyeon;Moon, Jiho;Lee, Hak-Eun;Lim, Nam-Hyoung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.11
    • /
    • pp.5566-5571
    • /
    • 2012
  • Block shear failure is one of limit states, and demands great caution in designing the tension member or connection joint of steel structures. From many studies and design specification, it is shown that the effect of the bolted connection type on the block shear failure was not considered. In order to investigate the effect of the bolted connection type(bearing type connection and slip critical connection) on the mode/strength of the block shear failure, tensile experiment is conducted in this study. Differences about the failure mode according to the design specification, bearing type connection, and slip critical connection are proposed from the analysis of test results. The variation of the block shear failure strength due to the frictional force in the slip critical connection is also investigated.

Load-Deformation Relationship of Single Bolted Connections (단일볼트 지압접합부의 힘-변형관계)

  • Kim, Dae Kyung;Lee, Cheol Ho;Jin, Seung Pyo;Yoon, Seong Hwahn
    • Journal of Korean Society of Steel Construction
    • /
    • v.29 no.5
    • /
    • pp.341-352
    • /
    • 2017
  • Well designed group bolted connections can exhibit excellent ductile behavior through the bearing mechanism until the occurrence of shear rupture in the bolt or in the connecting plate. This excellent ductility can be utilized in favor of economical connection design. In this study, comprehensive tests on single-bolt bearing connections were conducted and analyzed considering bearing boundary conditions. The primary objective was to propose a generalized bearing strength and load-deformation relationship that can be used for designing group-bolted connections. To this end, new bearing strength formula, deformation limits as well as new load-deformation relationship were first proposed. Especially the proposed load-deformation relationship can reflect the stiffness, strength, and geometrical boundary conditions of the joint. The proposed formula and relationship are validated based on test results.

Behaviour and design of bolted endplate joints between composite walls and steel beams

  • Li, Dongxu;Uy, Brian;Mo, Jun;Thai, Huu-Tai
    • Steel and Composite Structures
    • /
    • v.44 no.1
    • /
    • pp.33-47
    • /
    • 2022
  • This paper presents a finite element model for predicting the monotonic behaviour of bolted endplate joints connecting steel-concrete composite walls and steel beams. The demountable Hollo-bolts are utilised to facilitate the quick installation and dismantling for replacement and reuse. In the developed model, material and geometric nonlinearities were included. The accuracy of the developed model was assessed by comparing the numerical results with previous experimental tests on hollow/composite column-to-steel beam joints that incorporated endplates and Hollo-bolts. In particular, the Hollo-bolts were modelled with the expanded sleeves involved, and different material properties of the Hollo-bolt shank and sleeves were considered based on the information provided by the manufacture. The developed models, therefore, can be applied in the present study to simulate the wall-to-beam joints with similar structural components and characteristics. Based on the validated model, the authors herein compared the behaviour of wall-to-beam joints of two commonly utilised composite walling systems (Case 1: flat steel plates with headed studs; Case 2: lipped channel section with partition plates). Considering the ease of manufacturing, onsite erection and the pertinent costs, composite walling system with flat steel plates and conventional headed studs (Case 1) was the focus of present study. Specifically, additional headed studs were pre-welded inside the front wall plates to enhance the joint performance. On this basis, a series of parametric studies were conducted to assess the influences of five design parameters on the behaviour of bolted endplate wall-to-beam joints. The initial stiffness, plastic moment capacity, as well as the rotational capacity of the composite wall-to-beam joints based on the numerical analysis were further compared with the current design provision.

A Study on the Contact Characteristics of Metal Ring Joint Gaskets

  • Lee, Min-Young;Kim, Byung-Tak
    • Journal of the Korean Solar Energy Society
    • /
    • v.36 no.3
    • /
    • pp.25-31
    • /
    • 2016
  • Gaskets are usually used for the sealing of flange joints. The joint is usually composed of two flanges, a ring gasket and clamping bolts. The metal ring gasket is suitable for pipe flanges, pumps and valve joints in high temperature and high pressure environments. A very high surface stress is developed between a ring type joint gasket and the flange groove when the ring type joint is bolted up in a flange. The dimensions of flanges and ring joint gaskets for the pipe sizes that are in common use are specified in the ANSI codes. However, sometimes it is necessary to make a new design for the flange joint which is not specified in the codes, as the equipment is getting larger and larger in size. This paper presents the contact behavior of Class 600 ring joint gaskets with oval and octagonal cross sections. Five different sizes of gaskets are employed in the analysis, and one of them is newly designed on the basis of analysis results obtained from existing models. Three load steps are used to find the stress, stain and contact pressure etc., and to compare the contact characteristics among the models due to the bolt clamping force and the working surface pressure. ANSYS Workbench version15 is used to conduct the finite element analysis.

Measurement of Shear Contact Characteristics on Mechanical Joints (기계 조인트의 전단 컨택 특성 측정)

  • Lee, Chul-Hee
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.1350-1353
    • /
    • 2007
  • An experimental method based on contact resonance is developed to extract the contact parameters of mechanical joints under various clamped conditions. Mechanical joint parameters of shear contact stiffness and damping were extracted for different physical joint parameters such as surface finish of the mating surfaces, the presence of lubrication, the effect of the clamping pressure, and shear load. It was found that the shear contact stiffness values decreased with increasing clamping load and increased with increasing shear loading. Contact damping ratio values were almost constant with clamping load, but decreased with increasing shear load. Moreover, rough surfaces exhibited the highest shear stiffness and contact damping compared to smooth surfaces.

  • PDF

SIF of cracks of the holes in the Bolt-joint structure (Bolt 연결 구조물의 구멍주위 균열의 응력확대계수 계산)

  • 심동철;이기수
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.727-730
    • /
    • 2001
  • In many structures a common method of construction is to make use of bolted or riveted joints. With this type of joint the load is transmitted through a pin from one section of the structure to another. Fatigue cracks often start from the edges of holes, due to local stress concentration. In order to predict the fatigue crack growth, the stress intensity factor K for hole-edge cracks should be available. In this paper the stress intensity factors are computed for cracks in bolt-joint region considering the contact condition.

  • PDF

An Experimental Study of Friction Coefficient Variation Due to Vibration for Bolted Joint (볼트 체결시 진동에 의한 마찰계수 변화에 관한 실험)

  • Song, Chang-Kyu;Lee, Sang-Don;Cho, Yung-Joo
    • Tribology and Lubricants
    • /
    • v.23 no.2
    • /
    • pp.61-65
    • /
    • 2007
  • It is very important to connect machinery and maintain it. This is usually done by bolt joint. There are two ways in connecting the bolt joint : the angle method and the torque method. The torque method is a method that let the clamping force maintain. The underhead of the bolt's head and the thread friction are the main influences. This study focuses on how the clamping farce and friction coefficient change under the condition in vibrating the underhead of the bolt's head part. As a result, under vibration condition, we found out that the clamping farce increases, while the friction coefficient decreases.

Experimental behaviour of extended end-plate composite beam-to-column joints subjected to reversal of loading

  • Hu, Xiamin;Zheng, Desheng;Yang, Li
    • Structural Engineering and Mechanics
    • /
    • v.24 no.3
    • /
    • pp.307-321
    • /
    • 2006
  • This paper is concerned with the behaviour of steel and concrete composite joints subjected to reversal of loading. Three cruciform composite joint specimens and one bare steel joint specimen were tested so that one side of the beam-to-column connection was under negative moment and another side under positive moment. The steelwork beam-to-column connections were made of bolted end plate with an extended haunch section. Composite slabs employing metal decking were used for all the composite joint specimens. The moment-rotation relationships for the joints were obtained experimentally. Details of the experimental observations and results were reported.

Studies on Evaluation for Long-term Loading of Composite Wood-joint and Characteristics of Joint Strength (I) - The strength properties of mechanical joints of Pinus densiflora with drift pin and bolt - (목재 접합부의 강도특성 및 장기 내력 평가 (I) - 소나무재의 Bo1t 및 Drift pin 접합부 능력(耐力) 성능 평가 -)

  • Hong, Soon-Il;Hwang, Won-Jung;Kim, Eun-Sam;Jin, Kwang-Sung
    • Journal of the Korean Wood Science and Technology
    • /
    • v.29 no.4
    • /
    • pp.1-8
    • /
    • 2001
  • This study was carried out to investigate the strength and stiffness of drift pinned and bolted joints with steel-plates by the tension-type lateral strength tests. Specimens were solid wood of Pinus densiflora. Bolt and drift pin were jointed with inserted steel plates. Tests were conducted with combinations of two loading directions (parallel to the grain : 0 degree, perpendicular to the grain : 90 degree) and three diameters of fasteners (d = 6 mm, 10 mm, 12 mm). The results obtained were as follow: 1. In the test of the parallel to the grain, maximum loads were increased with increasing of the diameter of bolt and drift pin in the same end distance. In the test of perpendicular to the grain with diameter 10 mm and 12 mm, specimens mostly were failed with horizontal splits in woods reaching the yield load of drift pinned and bolted joints. 2. The ratio of maximum load to the yield load determined by the so-called "5% offset method", was great in bolted joints in the parallel to the grain This trend become more remarkable as the slenderness ratio was increased. 3. The calculated yield strength was agreed well with the experimental results of drift pinned joint(0 degree).

  • PDF