• Title/Summary/Keyword: block LDPC code

Search Result 55, Processing Time 0.023 seconds

Iterative Decoding for LDPC Coded MIMO-OFDM Systems with SFBC Encoding (주파수공간블록부호화를 적용한 MIMO-OFDM 시스템을 위한 반복복호 기법)

  • Sohn Insoo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.5A
    • /
    • pp.402-406
    • /
    • 2005
  • A multiple input multiple output orthogonal frequency division multiplexing (MIMO-OFDM) system using low-density parity-check (LDPC) code and iterative decoding is presented. The iterative decoding is performed by combining the zero-forcing technique and LDPC decoding through the use of the 'turbo principle.' The proposed system is shown to be effective with high order modulation and outperforms the space frequency block code (SFBC) method with iterative decoding.

Rate-Compatible LDPC Codes Based on the PEG Algorithm for Relay Communication Systems

  • Zhou, Yangzhao;Jiang, Xueqin;Lee, Moon Ho
    • Journal of Communications and Networks
    • /
    • v.17 no.4
    • /
    • pp.346-350
    • /
    • 2015
  • It is known that the progressive edge-growth (PEG) algorithm can be used to construct low-density parity-check (LDPC) codes at finite code lengths with large girths through the establishment of edges between variable and check nodes in an edge-by-edge manner. In [1], the authors derived a class of LDPC codes for relay communication systems by extending the full-diversity root-LDPC code. However, the submatrices of the parity-check matrix H corresponding to this code were constructed separately; thus, the girth of H was not optimized. To solve this problem, this paper proposes a modified PEG algorithm for use in the design of large girth and full-diversity LDPC codes. Simulation results indicated that the LDPC codes constructed using the modified PEG algorithm exhibited a more favorable frame error rate performance than did codes proposed in [1] over block-fading channels.

A LDPC decoder supporting multiple block lengths and code rates of IEEE 802.11n (다중 블록길이와 부호율을 지원하는 IEEE 802.11n용 LDPC 복호기)

  • Na, Young-Heon;Park, Hae-Won;Shin, Kyung-Wook
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.15 no.6
    • /
    • pp.1355-1362
    • /
    • 2011
  • This paper describes a multi-mode LDPC decoder which supports three block lengths(648, 1296, 1944) and four code rates(1/2, 2/3, 3/4, 5/6) of IEEE 802.11n WLAN standard. Our LDPC decoder adopts a block-serial architecture based on min-sum algorithm and layered decoding scheme. A novel way to store check-node values and parity check matrix reduces the sizes of check-node memory and H-ROM. An efficient scheme for check-node memory addressing is used to achieve stall-free read/write operations. The designed LDPC decoder is verified by FPGA implementation, and synthesized with a $0.18-{\mu}m$ CMOS cell library. It has 219,100 gates and 45,036 bits RAM, and the estimated throughput is about 164~212 Mbps at 50 MHz@2.5v.

A performance analysis of layered LDPC decoder for mobile WiMAX system (모바일 WiMAX용 layered LDPC 복호기의 성능분석)

  • Kim, Eun-Suk;Kim, Hae-Ju;Shin, Kyung-Wook
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.15 no.4
    • /
    • pp.921-929
    • /
    • 2011
  • This paper describes an analysis of the decoding performance and decoding convergence speed of layered LDPC(low-density parity-check) decoder for mobile WiMAX system, and the optimal design conditions for hardware implementation are searched. A fixed-point model of LDPC decoder, which is based on the min-sum algorithm and layered decoding scheme, is implemented and simulated using Matlab model. Through fixed-point simulations for the block lengths of 576, 1440, 2304 bits and the code rates of 1/2, 2/3A, 2/3B, 3/4A, 3/4B, 5/6 specified in the IEEE 802.16e standard, the effect of internal bit-width, block length and code rate on the decoding performance are analyzed. Simulation results show that fixed-point bit-width larger than 8 bits with integer part of 5 bits should be used for acceptable decoding performance.

A Good Puncturing Scheme for Rate Compatible Low-Density Parity-Check Codes

  • Choi, Sung-Hoon;Yoon, Sung-Roh;Sung, Won-Jin;Kwon, Hong-Kyu;Heo, Jun
    • Journal of Communications and Networks
    • /
    • v.11 no.5
    • /
    • pp.455-463
    • /
    • 2009
  • We consider the challenges of finding good puncturing patterns for rate-compatible low-density parity-check code (LDPC) codes over additive white Gaussian noise (AWGN) channels. Puncturing is a scheme to obtain a series of higher rate codes from a lower rate mother code. It is widely used in channel coding but it causes performance is lost compared to non-punctured LDPC codes at the same rate. Previous work, considered the role of survived check nodes in puncturing patterns. Limitations, such as single survived check node assumption and simulation-based verification, were examined. This paper analyzes the performance according to the role of multiple survived check nodes and multiple dead check nodes. Based on these analyses, we propose new algorithm to find a good puncturing pattern for LDPC codes over AWGN channels.

LDPC Decoder for WiMAX/WLAN using Improved Normalized Min-Sum Algorithm (개선된 정규화 최소합 알고리듬을 적용한 WiMAX/WLAN용 LDPC 복호기)

  • Seo, Jin-Ho;Shin, Kyung-Wook
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.4
    • /
    • pp.876-884
    • /
    • 2014
  • A hardware design of LDPC decoder which is based on the improved normalized min-sum(INMS) decoding algorithm is described in this paper. The designed LDPC decoder supports 19 block lengths(576~2304) and 6 code rates(1/2, 2/3A, 2/3B, 3/4A, 3/4B, 5/6) of IEEE 802.16e mobile WiMAX standard and 3 block lengths(648, 1296, 1944) and 4 code rates(1/2, 2/3, 3/4, 5/6) of IEEE 802.11n WLAN standard. The decoding function unit(DFU) which is a main arithmetic block is implemented using sign-magnitude(SM) arithmetic and INMS decoding algorithm to optimize hardware complexity and decoding performance. The LDPC decoder synthesized using a 0.18-${\mu}m$ CMOS cell library with 100 MHz clock has 284,409 gates and RAM of 62,976 bits, and it is verified by FPGA implementation. The estimated performance depending on code rate and block length is about 82~218 Mbps at 100 MHz@1.8V.

An analysis of Multi-mode LDPC Decoder Performance for IEEE 802.11n WLAN (IEEE 802.11n WLAN용 Multi-mode LDPC 복호기의 성능 분석)

  • Park, Hae-Won;Na, Young-Heon;Shin, Kyung-Wook
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2010.10a
    • /
    • pp.80-83
    • /
    • 2010
  • This paper describes an analysis of decoding performance of multi-mode LDPC(Low Density Parity Check) decoder which supports three block lengths (648, 1296, 1944) and four code rates (1/2, 2/3,3/4, 5/6) for IEEE 802.11n WLAN system. A fixed-point model of LDPC decoder which adopts min-sum algorithm and layered decoding scheme is implemented using Matlab. From fixed-point simulation results for various bit-width parameters such as internal bit-width, bit-width of integer and fractional parts, an optimal design condition and decoding performance of LDPC decoder are analyzed.

  • PDF

An analysis of Optimal Design Conditions of Multi-mode LDPC Decoder for IEEE 802.11n WLAN System (IEEE 802.11n WLAN용 다중모드 LPDC 복호기의 최적 설계조건 분석)

  • Park, Hae-Won;Na, Young-Heon;Shin, Kyung-Wook
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.15 no.2
    • /
    • pp.432-438
    • /
    • 2011
  • This paper describes an analysis of optimal design conditions of multi-mode LDPC(low density parity check) decoder which supports three block lengths (648, 1296, 1944) and four code rates (1/2, 2/3, 3/4, 5/6) for IEEE 802.11n WLAN system. A fixed-point model of LDPC decoder, which adopts min-sum algorithm and layered decoding scheme, is implemented using Matlab. From fixed-point simulation results for various bit-width parameters such as internal bit-width, integer/fractional part bit-widths, optimal design conditions and decoding performance of LDPC decoder are analyzed.

A Design of Multi-Standard LDPC Decoder for WiMAX/WLAN (WiMAX/WLAN용 다중표준 LDPC 복호기 설계)

  • Seo, Jin-Ho;Park, Hae-Won;Shin, Kyung-Wook
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.2
    • /
    • pp.363-371
    • /
    • 2013
  • This paper describes a multi-standard LDPC decoder which supports 19 block lengths(576~2304) and 6 code rates(1/2, 2/3A, 2/3B, 3/4A, 3/4B, 5/6) of IEEE 802.16e mobile WiMAX standard and 3 block lengths(648, 1296, 1944) and 4 code rates(1/2, 2/3, 3/4, 5/6) of IEEE 802.11n WLAN standard. To minimize hardware complexity, it adopts a block-serial (partially parallel) architecture based on the layered decoding scheme. A DFU(decoding function unit) based on sign-magnitude arithmetic is used for hardware reduction. The designed LDPC decoder is verified by FPGA implementation, and synthesized with a 0.13-${\mu}m$ CMOS cell library. It has 312,000 gates and 70,000 bits RAM. The estimated throughput is about 79~210 Mbps at 100 MHz@1.8v.

A design of LDPC decoder supporting multiple block lengths and code rates of IEEE 802.11n (다중 블록길이와 부호율을 지원하는 IEEE 802.11n용 LDPC 복호기 설계)

  • Kim, Eun-Suk;Park, Hae-Won;Na, Young-Heon;Shin, Kyung-Wook
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2011.05a
    • /
    • pp.132-135
    • /
    • 2011
  • This paper describes a multi-mode LDPC decoder which supports three block lengths(648, 1296, 1944) and four code rates(1/2, 2/3, 3/4, 5/6) of IEEE 802.11n WLAN standard. To minimize hardware complexity, it adopts a block-serial (partially parallel) architecture based on the layered decoding scheme. A novel memory reduction technique devised using the min-sum decoding algorithm reduces the size of check-node memory by 47% as compared to conventional method. The designed LDPC decoder is verified by FPGA implementation, and synthesized with a $0.18-{\mu}m$ CMOS cell library. It has 219,100 gates and 45,036 bits RAM, and the estimated throughput is about 164~212 Mbps at 50 MHz@2.5v.

  • PDF