A Good Puncturing Scheme for Rate Compatible Low-Density Parity-Check Codes

  • Choi, Sung-Hoon (LG electronics Inc.) ;
  • Yoon, Sung-Roh (School of Electrical Engineering Korea University) ;
  • Sung, Won-Jin (Department of Electronic Engineering, Sogang University) ;
  • Kwon, Hong-Kyu (Department of Industrial and Management Engineering, Namseoul University) ;
  • Heo, Jun (School of Electrical Engineering Korea University)
  • Published : 2009.10.31

Abstract

We consider the challenges of finding good puncturing patterns for rate-compatible low-density parity-check code (LDPC) codes over additive white Gaussian noise (AWGN) channels. Puncturing is a scheme to obtain a series of higher rate codes from a lower rate mother code. It is widely used in channel coding but it causes performance is lost compared to non-punctured LDPC codes at the same rate. Previous work, considered the role of survived check nodes in puncturing patterns. Limitations, such as single survived check node assumption and simulation-based verification, were examined. This paper analyzes the performance according to the role of multiple survived check nodes and multiple dead check nodes. Based on these analyses, we propose new algorithm to find a good puncturing pattern for LDPC codes over AWGN channels.

Keywords

References

  1. J. Hagenauer, 'Rate-compatible punctured convolutional codes (rcpccodes) and their applications,' IEEE Trans. Commun. , vol. 36, pp. 389-400, Apr. 1988 https://doi.org/10.1109/26.2763
  2. J. Li and K. Narayanan, "Rate-compatible low-density parity-check codesfor capacity-approaching ARQ scheme in packet data communications," in Proc. CIIT, Nov. 2002
  3. T. Tian and C. R. Jones, 'Construction of rate-compatible LDPC codes utilizing information shortening and parity puncturing,' EUR. Wireless Commun.Netw. , vol. 5, pp. 1-7, 2005 https://doi.org/10.1155/WCN.2005.789
  4. J. Ha, J. Kim, D. Klinc, and S. W. McLaughlin, 'Rate-compatible puncturedlow-density parity-check codes with short block lengths,' IEEETrans. Inf.Theory, voI. 52, pp.728-738 , Feb.2006 https://doi.org/10.1109/TIT.2005.862118
  5. D. Klinc, J. Ha, J. Kim, and S.W. McLaughlin, 'Rate-compatible punctured low-density parity-check codes for ultra wide band systems;' in Proc. IEEE GLOBECOM, Nov. 2005, pp. 3856-3860 https://doi.org/10.1109/GLOCOM.2005.1578492
  6. E. Y. Choi, S. B. Suh, and J.H. Kim, 'Rate-compatible puncturing for low densityparity-check codes with dual-diagonal parity structure,' in Proc IEEE PIMRC, Sept. 2005, pp. 2642-2646 https://doi.org/10.1109/PIMRC.2005.1651922
  7. S. H. Choi, Y. S. Shin, J. Heo, K. H. Cho, and M. S. Oh, 'Effective puncturing schemes for block-type low-density parity-check codes,' in Proc IEEE VTC-spring, Apr. 2007, pp. 1841-1845 https://doi.org/10.1109/VETECS.2007.382
  8. M. R. Yazdani and A. H. Banihashemi, 'On construction of ratecompatiblelow-density parity-check codes,' IEEE Trans. Commun. ,vol. 8, pp. 159-161, Mar. 2004 https://doi.org/10.1109/LCOMM.2004.825728
  9. T. Richardson and R. Urbanke, "The capacity of low-density parity-checkcodes under message-passing decoding," IEEE Trans. Inf. Theory, vol. 47,pp. 599-618, Feb. 2001 https://doi.org/10.1109/18.910577
  10. S. Y. Chung, T. J. Richardson, and R. L. Urbanke, "Analyisis of sumproduct decoding of low-density parity-check codes using a Gaussian approximation," IEEE Trans. Inf. Theory, vol. 47, pp. 657-670, Feb. 2001 https://doi.org/10.1109/18.910580
  11. S. H. Myung, K. C. Yang, and J. Y. Kim, 'Quasi -cyclic ldpc codes for fast encoding, IEEE Trans. Inf. Theory, vol. 51, pp. 2894-2901, Aug. 2005 https://doi.org/10.1109/TIT.2005.851753
  12. I. W. Group, "Part 16: Air interface for fixed and mobile broadband wireless access systems," 2005
  13. C. Zheng, N. Miyazaki, and T. Suzuki, 'Rate compatible low-density Parity-check codes based on progressively increased column weights,' IEICETrans. Fundamentals, vol. E89, pp. 2493-2500, Oct. 2006 https://doi.org/10.1093/ietfec/e89-a.10.2493
  14. T. Richardson and R. Urbanke, "Efficient encoding of low-density paritycheckcodes," IEEE Trans. Inf Theory, vol. 47, pp. 638-656, Feb.2001 https://doi.org/10.1109/18.910579
  15. X. Y. Hu, E. Eleftheriou, and D. M. Amold, "Regular and irregular progressive edge-growth tanner graphs," IEEE Trans. Inf Theory, vol. 51,pp.386-398, Jan.2005 https://doi.org/10.1109/TIT.2004.839541