JOURNAL OF COMMUNICATIONS AND NETWORKS, VOL. 11, NO. 5, OCTOBER 2009

455

A Good Puncturing Scheme for Rate Compatible
Low-Density Parity-Check Codes

Sunghoon Choi, Sungroh Yoon, Wonjin Sung, Hongkyu Kwon, and Jun Heo

Abstract: We consider the challenges of finding good puncturing
patterns for rate-compatible low-density parity-check code (LDPC)
codes over additive white Gaussian noise (AWGN) channels. Punc-
turing is a scheme to obtain a series of higher rate codes from a
lower rate mother code. It is widely used in channel coding but
it causes performance is lost compared to non-punctured LDPC
codes at the same rate. Previous work, considered the role of sur-
vived check nodes in puncturing patterns. Limitations, such as sin-
gle survived check node assumption and simulation-based verifica-
tion, were examined. This paper analyzes the performance accord-
ing to the role of multiple survived check nodes and multiple dead
check nodes. Based on these analyses, we propose new algorithm to

find a good puncturing pattern for LDPC codes over AWGN chan-
nels.

Index Terms: block-type LDPC codes (B-LDPC), density evolution
(DE), low-density parity-check code (LDPC) codes, puncturing.

L. INTRODUCTION

Design of good rate-compatible low-density parity-check
code (LDPC) codes is a major concern for recent mobile com-
munication standardization efforts. Several schemes to achieve
effective rate compatibility have been researched in the litera-
ture. Among those schemes, puncturing is known as one of the
most effective and convenient ways to change code rates. How-
ever, the performance of punctured codes strongly depends on
the nodes that are punctured (i.e., puncturing pattern). There-
fore, many research studies have sought good puncturing pat-
terns for LDPC codes [1]-[8].

The density evolution (DE) technique has been widely used
in the literature to analyze the asymptotic performance of LDPC
codes. It recursively tracks the probability density of the extrin-
sic information between the variable nodes and check nodes of
an LDPC code [9]. A simplified version of the DE technique was
introduced with a Gaussian approximation in [10]. The Gaus-

Manuscript received May 07, 2008; approved for publication by Giorgio Tar-
icco, Division I Editor, February 27, 2009.

This research is supported by the Ubiquitous Computing and Network (UCN)
Project, Knowledge and Economy Frontier R&D Program of the Ministry of
Knowledge Economy (MKE) in Korea as a result of UCN’s subproject 09C1-
C2-31T and the MKE (Ministry of Knowledge Economy), Korea, under the
ITRC(Information Technology Research Center) support program supervised
by the IITA (Institute for Information Technology Advancement) (IITA-2009-
C1090-0902-0045).

S. Choi is with the LG electronics Inc., Seoul, Korea, email: monodt@lge.
com.

W. Sung is with the Department of Electronic Engineering, Sogang University,
Seoul, Korea, email: wsung@sogang.ac.kr.

H. Kwon is with the Department of Industrial and Management Engineering,
Namseoul University, Cheonan, Korea, email: hongkyuk @nsu.ac kr.

S. Yoon and J. Heo (corresponding author) are with the School of Elec-
trical Engineering Korea University, Seoul, Korea, email: {sryoon, jun-
heo} @korea.ac.kr.

sian approximation was used on the basis that extrinsic informa-
tion can closely approximate a Gaussian random variable as the
number of iterations increases.

In [4], a puncturing scheme for LDPC codes with short and
moderate block lengths was proposed in a systematic way; the
performance of LDPC codes was analyzed by the DE technique.
The punctured nodes were categorized by the required number
of iterations to be recovered. For instance, the k-SR node is
the punctured variable node that is recovered after kth itera-
tions. Based on this categorization, a search algorithm named as
grouping and sorting for punctured nodes was proposed. The
code structure, however, was over-simplified, such that each
punctured node had only one survived check node that gave
messages to recover the punctured node.

Conversely, LDPC codes have some disadvantages compared
to other codes, such as an encoding complexity and a high mem-
ory requirement. Recently, many people have tried to solve them
in some structured forms, such as a lower triangular shape and in
new code types such as quasi-cyclic LDPC (QC-LDPC) codes
[11]. The block-type LDPC (B-LDPC) code, a kind of QC-
LDPC codes, was adopted in the IEEE 802.16¢ standards [12].
In [6], a block-unit puncturing for block-type LDPC codes was
considered. In addition, it was suggested that the number of
survived check nodes be maximized to enhance performance.
However, the suggestion was not based on any analytical meth-
ods. Rather it was based on Monte-Carlo simulation with par-
ticular parity check matrices. It is also well-known that the cy-
cles of LDPC codes affect performance, especially in the high
signal-to-noise area. In [13], the relationship between punctur-
ing patterns and the cycles of punctured nodes was presented. It
was suggested to puncture the variable nodes with large cycles
for a good rate compatible LDPC code.

In this paper, we use the DE technique to analyze the positive
effect of multiple survived check nodes and multiple dead check
nodes. We show that the mean of log likelihood ratio (LLR)
passed between variable nodes and check nodes converges to the
correct value faster as the number of survived check nodes and
number of dead check nodes increases. Based on this analytical
result, we propose an algorithm to find good puncturing pattern.
We also show that the analysis results hold for block-type LDPC
codes as well. Numerical results on both regular LDPC code and
irregular LDPC code are in step with the analytical results.

II. BASIC DEFINITIONS AND NOTATIONS

k-step recoverable (k-SR) nodes, survived check (SC) nodes
and dead check (DC) nodes are defined as in [4] to categorize
punctured nodes based on their characteristics. The punctured
nodes have zero channel LLR values and they spread to the other
unpunctured nodes through neighboring check nodes during the

1229-2370/09/$10.00 (© 2009 KICS

456 JOURNAL OF COMMUNICATIONS AND NETWORKS, VOL. 11, NO. 5, OCTOBER 2009

SC node of 2-SR
(DC node of 1-SR)

Fig. 1. Description of 1-SR node, 2-SR node, SC node and DC node
{filled circle: Punctured node, unfilled circle: Punctured node).

iterative decoding process. This is the main reason for the per-
formance loss of punctured LDPC codes. Therefore, we should
choose the punctured nodes that can have non-zero LLR values
(it is defined as recover) as quickly as possible.

The k-SR node is defined as a punctured variable node that
is recovered after kth iterations where k corresponds to the re-
covery level. If any punctured node has at least one neighbor-
ing check node whereby neighbors are all unpunctured nodes,
then it is called a 1-SR node. After the first iteration, the 1-SR
node can be recovered by unpuntured nodes sharing the same
check nodes. The neighboring check node(s) with all unpunc-
tured nodes is(are) defined as SC node(s) of the 1-SR node. The
other check nodes, except for the SC node(s), are defined as DC
nodes of the 1-SR node. That is the SC node is the check node
that helps the k-SR node recover and the DC node is the check
node which does not help the £-SR node recover. Therefore, if
a punctured node becomes a k-SR node, its SC node(s) of k-SR
should neighbor at least one (k-1)-SR node while the others are
K’-SR nodes, where 0 < k¥’ < k — 1. Examples of a 1-SR node
and 2-SR node are as described in Fig. 1. The filled circles rep-
resent unpunctured nodes; unfilled circles represent punctured
nodes. A k-SR node can have a single or multiple SC nodes.
A k-SR node may or may not have a DC node(s). A hierarchi-
cal structure consisting of various SR nodes, SC nodes, and DC
nodes is defined as a recovery tree [4].

III. ANALYSIS OF SURVIVED CHECK NODES
A. Density Evolution

The DE technique has been widely used in the literature to
analyze the asymptotic performance of LDPC codes. It recur-
sively tracks the probability density of the extrinsic information
between the variable nodes and check nodes of an LDPC code
[9]. A simplified version of the DE technique was introduced
with a Gaussian approximation in [10]. The Gaussian approx-
imation was based on the extrinsic information being approxi-
mated to a Gaussian random variable as the number of iterations
increases. The extrinsic information is usually expressed as the
log-likelihood ratio (LLR) defined as

ply|a=0)
plyla=1)

v=In

Fig. 2. Recovery tree in the case where each punctured node has a
single SC node.

where a denotes a random variable describing the bit value of
the transmitted codeword and p(-) denotes the probability den-
sity function. The output LLR message from a variable node
with d,, edges can be calculated as

dy—1
v=20 4 Z U;
i=1

where v(®) denotes the received LLR value from the channel,
which is a function of signal-to-noise ratio, and u; denotes the
LLR message from the ith check node to the variable node. The
output LLR message from a check node with d. edges can be
calculated as

de—1

U . 1)]'

tanh 5= 1—[1 tanh 0}
]:

where v; denotes the LLR message from the jth variable node
to the check node. The recursive calculation between variable
nodes and check nodes is executed for a sufficiently large num-
ber of iterations to determine if the LLR message converges to
the correct codeword at a specified channel noise level.

B. The Recovery Tree with a Single SC Node

In this section, we assume that each punctured node is con-
nected to a single SC node that gives recovery information to the
punctured node. Let V() denote a k-SR node and C*) denote
a neighboring check node of the k-SR node. Let u denote the
LLR value from a check node to a variable node and v denote the
LLR value from a variable node to a check node. «(*) and mq(f)
denote the LLR value and its mean from the SC node of a k-SR
node to a k-SR node. v®) and mf,k) denote the LLR value and
its mean from a k-SR node to the SC node of a (k + 1)-SR node.
v(® and mq(,o) represent the LLR value and its mean from the
additive white Gaussian noise (AWGN) channel. Based on DE
with Gaussian approximation [10], we present how LLR mes-
sages evolve on the recovery tree. For simplicity, only the 1-SR
and 2-SR nodes are considered in Fig. 2.

CHOI et al.: GOOD PUNCTURING SCHEME FOR RATE COMPATIBLE LDPC CODES

At the survived check node Cfl), the LLR value is updated
by the following equation

¢h)7y 48 -1
E{tanh“—;—] { [tanh%” 1)

where dgll) denotes the degree of the check node C’fl). Assum-
ing Gaussian approximation, we can modify (1) as
1 M _
1= (my) = [1 = g(m{?)] %~ @
where the function ¢(-) is defined as [10]
1—— tanh § ex ()2 du, x>0
b(z) = { f p(—)
1, z=0.

Then, the mean value mil)l from the check node C’l(l) to the

punctured variable node Vl(l) is obtained as

mi =67 {1 - |

u,l

L= g(m{))5).

Because of the assumption that a punctured node has only
one SC node, m() 1 equals to m ;- Similarly, for the other SC
node 02(, the mean value m() from the check node Cél) to

the punctured variable node V2) is obtained as

a%)

) = [1— ¢(m®)) %1
ié $H1 - [1 — g(m®)] %1y
1)

where d, ; denotes the degree of the check node C; () With the

assumption that a punctured node has only one SC node, m()

equals to mi)l Then, the mean value m) from the check node

C® to the punctured variable node V@ is obtained using (2)
and (3) as

1 - ¢(m) ©

-

1-¢(m®)
[1 - 60n{)
)%
=[1 = ¢(m ()]

1= o(mSN — p(m{))e" =
(1)

=[1-(m ()] 1 (m)] [l ()]

where dg) denotes the degree of the check node C?) and
S(C@) is the total number of unpunctured nodes under the SC
node C® of 2-SR variable node V(2 as

S(C®) = (d] = 1) +(df3 — 1) + (@ —).
Then, m$’ can be obtained as
mi® =6 L [1 - p(m{)*C,

Generally, for k-SR nodes

m{E) = ¢7H{1 -1
m®) = m®

— $(m@)5 ™y @)

457

Fig. 3. Recovery tree with multiple survived check (SC) nodes.

where S(C(%)) is the total number of unpunctured nodes under
the SC node C*) of k-SR variable node V(*). It is notewor-
thy that the mean of the LLR value is inversely proportional to
S(C*)) because the function ¢(-) is a monotonically decreas-
ing function and ¢(-) € (0, 1]. In the AWGN channel, assuming
the independent, identical distribution and symmetry condition,
the error probability of a node V is given by

P.(V) %(%) =Q<\/§) 5)

where o2 is the variance of the LLR value from a node V. Based
on (4) and (5), and the single SC node assumption, we can con-
clude that the error probability increases when the number of
unpunctured nodes increases.

C. The Recovery Tree with Multiple SC Nodes

The goal of this section is to analyze the effect of multiple SC
nodes with LLR message passing. In Fig. 3, a recovery tree with
multiple SC nodes of (k + 1)-SR is shown. Let N, (V*+1)
denote the number of SC nodes of the (k + 1)-SR node V (++1).
For simplicity, we assume that there is a single SC node with up
to £-SR nodes. Based on the derivation of the previous section,

the LLR values from two SC node Ci(kﬂ) can be represented as

6711 = [1 — p(m@))5E™ ©)

Because the outgoing LLR value from a variable node is the sum
of the incoming LLR values from other variable nodes,

(k+1)
mu,i -

NSC(V(k+1))

D e 2
i=1

ST ¢TI [- gm@)FETy,

i=1

In (7) each term m(k+1) is a nonnegative value with all zero

codeword assumption. Therefore, the multiple SC nodes case
with N,.(V*+1)) nonnegative terms makes the outgoing LLR

(++1) evolve faster than that with the single SC node
k+1)

value my
case. As a spec1al case, we assume that all SC nodes C;

(1 <i < Ng(V (k+1Y) have the same number of unpunctured
nodes under the SC nodes of (k + 1)-SR node. Then,

C(k+1) — c*+D)

(k+1)

(k‘+1)
Ui my

458 JOURNAL OF COMMUNICATIONS AND NETWORKS, VOL. 11, NO. 5, OCTOBER 2009

Fig. 4. Recovery tree with muitiple dead check (DC) nodes.

where (1 < i < NSC(V(’“‘H)) Therefore, the number of sur-

vived check nodes NSC(V(’“‘H)) is multiplied to m(k+1)
mgk—l—l) — NSC(V(k+1))m,(uk+l)
= Noo(VED)G {1~ [1 - p(m{) 5™},

It is noted that the total number of unpunctured nodes under
the (k+1)-SR node V*+1) increase N,.(V *#+1) times such as
N (VEFD)S(C+1), However the effective number of un-
punctured nodes which gives a negative effect on performance
is still S(C*+1)) which is the power of 1 — ¢(m1(,0)) in the pre-
vious equation. Therefore the mean of the LLR value increases
faster than that of the single survived check node. As a result,
the error probability in (5) decreases.

D. The Recovery Tree with Multiple DC Nodes

To prove the effect of DC nodes, we use a recovery tree with
a DC node as depicted in Fig. 4. Let DV denote the DC node
of 1-SR nodes V(l) and V(l), m(l) denote the mean LLR value
from D to V(1 Then, m() is represented as ml() } = () 1+
i ; Each m(l) and me ; can be obtained similarly to equatlon

(6). After first iteration, m() is equal to m() } because there are
no evolved LLR values from DWW due to the zero-LLR value
of 1-SR node Vz(l). However, after second iteration, mf}()i is a

non-zero LLR value because V(l) was already recovered after

()

first iteration. Therefore, m,; ; can be represented as

m") = 71— [1 - g(m(®))4 +5(")-2y

=6 M1 = [1= gm0y

where S(D™) is the total number of unpunctured nodes under

the DC node D), Conclusively, the mean LLR value m() 1 after

second iteration becomes
1 (1)
mi] =71 = [1 — p(m)]5Cy

+¢7H1 - [L - g(m@)F@=S@Ny - (g)

Based on (5) and (8), we can conclude that the DC node gives
positive effect (i.e., make m() evolve faster) to the k-SR node

after all punctured nodes under the DC node are recovered.
Also, we can easily know that the more number of DC nodes
makes the lower error probability similarly to the multiple SC
nodes case.

IV. PROPOSED PUNCTURING ALGORITHM FOR
LDPC CODES

In this section, we present a new puncturing algorithm that
maximizes the number of SC nodes and DC nodes. The new
puncturing algorithm consists of grouping and ordering algo-
rithms. In the previous section, we showed a higher number of
SC nodes and DC nodes results in better performance. To im-
plement this idea, we try to select as many SC nodes as possible
from check nodes by a grouping algorithm. Then the selected
punctured nodes are ordered according to their number of SC
nodes and DC nodes by the ordering algorithm. Further infor-
mation on the new algorithm is detailed below.

Proposed Puncturing Algorithm < Definition >

1. Parity-check matrix of a mother code is given by H, of which
size is m X n.

2. Categorize the variable nodes according to their edge distri-
butions into multiple subsets, Vo, V1, -+, Vg, ..., where Vg
represents the set of variable nodes which have the lowest
number of edges and Vy, .. represents the set of variable
nodes which have the highest number of edges.

3. Define the variable node sets Gy, G4, - - -, such as G is the
set of unpunctured nodes,G is the set of 1-SR nodes, and
Gy, is the set of k-SR nodes.

4. Define the check node sets Cy, C1, - - -, such as Cy is the set
of unselected check nodes (neither SC nodes nor DC nodes)
and CY, is the set of SC nodes of k-SR variable nodes.

< Initialization >

5. Set the k-SR variable node set G, = ¢, where k > 1 and set
Gy as a set of all variable nodes, where ¢ denotes an empty
set.

6. Set the k-SR SC node set C, = ¢, where k > 1 and set Cy
as a set of all check nodes.

7. Set the variable node edge degree level i = 0, the number
of shared SC nodes [= 0, the recovery level £ = 1, the
ordering index p = 1, and P = ¢.

< Grouping >

8. Select a variable node v from v € (Gy N V;), which satis-
fies following three conditions. If there are more than one
variable nods satisfying the following three conditions, pick
one randomly. If there is no variable node which satisfies
following three conditions, go to step 12.

(@) |[NYNCy| =1, where | - | is a cardinality of a set, NV =
{c|Hc, = 1, and 1 < ¢ < m}(ie., NV is a set of the
neighboring check nodes of variable node v), and H,,
is the element of ¢ th row and v th column of the parity
check matrix H.

(b) IN*NCy| > 1 (i.e., at least one SC node for the variable
node v).

(©) (N“/ UCk) € NY, where 1 < k' < kand Vo' € Gy,
where v’ # v (i.e., at least one SC node for the previously
punctured variable nodes).

CHOI et al.: GOOD PUNCTURING SCHEME FOR RATE COMPATIBLE LDPC CODES

9. Gy = Go\{v},Gr = Gy U{v},and P = P U {v} (ie.,
update k-SR node sets and SC node sets).
10. For check nodes which are the elements of NV
(a) If c € NY N Cy, then Cy, = C\{c}.
(b) If c € NN Cy, then Cy = Co\{c} and Cy, = C, U{c}.
(©) Ifc € N*NCyr,where 1 < k' < kthen Cpr = Cr\{c}.
11. Go to step 8 (i.e., repeat the selection of variable node).
12. Ifl = 0,theni =i+ 1. Else if [#£ 0, theni =¢ — 1.
13. If 0 € ¢ < dy, max. g0 to step 8.

< Ordering >

14. Choose the node v in P which has max |[N* N Ci|(i.e.,
maximum number of survived checks). If there are more
than one variable nodes with the same conditions, pick one
which has max |N?|.

15. Assign present order p to selected node v.

16. P=P\{v}andp=p+ 1.

17. If P = ¢, go to step 20 (i.e., restart grouping).

18. If P # ¢, go to step 15 (i.e., repeat ordering).

< Parameter setting >

19. Set{ =1+ 1and ¢ = dy max-

20. Ifl < max|NV| for all v, go to step 8.

21. Ifl = max |N"V|,setk = k+ 1,1 = 0 and set Cj as a set of
all check nodes. Go to step 8.

It is assumed that a mother code is given with m x n parity
check matrix H in step 1. In step 2, we categorize all variable
nodes in each V; according to the degree(i.e., number of con-
nected edges). In step 3 and 4, G, and O, are defined as the set
of k-SR nodes and the set of SC nodes of k-SR nodes respec-
tively. Gy is the set of unpunctured nodes and Cj is the set of
check nodes that are unselected for either SC nodes or DC nodes
up to the current recovery level. Steps 5 to step 7 initialize pa-
rameters. In step 7, ¢ denotes the variable edge degree, k denotes
the recovery level, [denotes the number of shared SC nodes by
two different variable nodes, and p denotes the puncturing order.

In step 8, we choose one variable node in V; satisfying three
conditions as a £-SR node. In the first condition 8-(a), we choose
the node that has the lowest number of SC nodes shared by other
variable nodes to maximize the number of SC nodes and to use
more check nodes in H as SC nodes, since more check nodes
give a greater chance of more SC nodes. The set N¥ denotes the
neighboring check nodes of variable node v. The second condi-
tion 8-(b) and the third condition 8-(c) are required to guarantee
at least one SC node of the currently selected punctured node
and previously selected punctured nodes. Otherwise the punc-
tured node would not be recovered at the kth iteration. Steps 9
and 10 update the k-SR node set and SC node sets after choos-
ing one k-SR node v. Selecting a variable node is repeated until
there is no variable node in V; satisfying the three conditions in
step 8. If no more nodes of V; satisfy the condition in Step 8, the
value of ¢ is changed according to [. If | = 0 (i.e., the first time
grouping in the k-SR node group), 4 increases from 0 to d;, max
to maximize the number of elements in the lower recovery level.
Conversely, if [> 0, 7 decreases from d;, max to 0 in order to
maximize the number of SC nodes, since nodes with more edges
may have more SC nodes.

Steps 1418 assign ordering numbers to the selected punc-
tured nodes. The node with the greater number of SC nodes is
assigned to a lower ordering number. If two or more variable

459
Po,o PO,l Po,z Po,n,, -2 Po,n,, -1
1)1,0 Pl,l Pl,2 I)l,nb -2 Pl,nb -1
H = Pz,o P2,1 P2,2 PZ,nb -2 PZ,nb—l
Pmb -1,0 Pmb -1,1 Pmb -1,2 Pmb —lny -2 Pmb ~Lny~1

Fig. 5. Parity-check matrix of QC-LDPC codes.

nodes are selected, we choose the node with more DC nodes.
When we select a puncturing pattern for a desired code rate, the
punctured nodes with the lower ordering number are selected
first. After ordering, the number of shared SC nodes is updated
I = 1 + 1, and the selection of a variable node is repeated until
there is no variable node in V; satisfying the three conditions in
step 8. If [becomes the maximum variable degree, the grouping
of the present k-SR nodes ends. Then, we set k = k£ + 1 and
perform grouping and ordering for the (k -+ 1)-SR node. Whole
algorithm ends when no variable node is selected in step 8 for
the newly updated (k + 1)-SR node.

V. BLOCK-TYPE LDPC CODES

In this section, we apply the new puncturing algorithm to the
block-type LDPC codes. It is well known that LDPC codes have
complex encoding problem and high memory requirement prob-
lem as their disadvantages. The block-type LDPC codes have
been successfully developed as a solution of those problems. We
will show that the proposed puncturing algorithm is also valid
for the block-type LDPC codes without any modification.

A. Parity-Check Matrices of the QC-LDPC Codes

We can describe the parity-check matrix of QC-LDPC codes
as shown in Fig. 5. The matrix H is expanded from a binary
base matrix Hj, of size m; X np. In the base matrix Hy, each
element (Hy); ; is represented by 1 or 0. In Fig. 5, P; ; is the
circulant permutation matrix which is a shifted identity matrix
or a zero matrix where 0 < i <mpy —land 0 < j < mp — L.
We define the size of P; ; as z X z, with an integer z > 1. Non-
zero P; ; is obtained by ¢; ; time right shifted identity matrix
(0 < gqi; < z). Let n be the codeword size and m be the
parity bit size. Then, H is a m X n matrix where m = myz and
n = nyz. Although the base matrix offers us information about
the basic pattern of the expanded parity-check matrix, it does
not show the forms of the right-shifted permutation matrices. A
model matrix shows not only the information offered by a base
matrix, but also the right-shifted value. In the model matrix, the
shifted number is shown in the location of a permutation matrix
and a negative number or blank is used in a zero matrix location.

B. Block-Type LDPC Codes

B-LDPC codes are kinds of QC-LDPC codes where degree
distributions are irregular (i.e., dual diagonal parity part) for fast
encoding. We can divide the base matrix of the B-LDPC codes
into two parts, where the systematic part Hy; and the parity part

460 JOURNAL OF COMMUNICATIONS AND NETWORKS, VOL. 11, NO. 5, OCTOBER 2009

Hy; are such that

Hy, = [(Hb1)mg x ko | (Hb2) my xmy |- 9

In (9), ky means the size of the systematic part in the base ma-
trix. Hp, is partitioned into two parts. One is a column vector
h;, where the column weight is 3. The other part is a matrix H;,
which has a dual diagonal structure. A vector hy, is inserted to
prevent that the right-margin of Hy, having a column weight 1.

There are many advantages using B-LDPC codes. First, it
is possible to do a block-unit operation when performing the
encoding and decoding processes. That is, a system needs not
know the entire information of the parity-check matrix; it only
needs the information of the model matrix. In that case, it is
possible to operate with the entire information using shift reg-
isters. We can reduce much of the memory by a factor of 1/2.
Second, codewords of various sizes are easily encoded using
only one model matrix with various sizes of z. Third, fast and
simple encoding is available based on the Richardson-Urbanke
encoding method instead of Gaussian elimination to generate a
matrix, because of the structure of the parity part Hpy that is a
dual diagonal type [11], [14].

C. Puncturing of Block-type LDPC Codes

The analytical results in Section III are good for all kinds of
LDPC codes. However, in B-LDPC codes, it is effective to punc-
ture the nodes on a block-unit. Hence, we consider the block-
unit puncturing for B-LDPC codes. It can be shown that the
results in Section III hold for block-unit puncturing as follows.

Theorem 1: When H; and H denote a binary base matrix and
the corresponding expanded parity check matrix respectively,
variable nodes in H corresponding to a k-SR node in Hy are
also £-SR nodes and check nodes in H corresponding to a SC
(DC) node in H;, are also SC (DC) nodes.

Proof: To prove this theorem, we use a simple tree struc-
ture. Fig. 6(a) is the tree structure of k-SR node Va(k) in a base
matrix H. It can be easily noticed that the check node C® is
the SC node of V() and D®) is the DC node of V() due to
another k-SR node V(Assuming that z is two, an expanded
tree structure in parity check matrix H is as shown in Fig. 6(b).
In the expanded structure, each node in Fig. 6(a) becomes two
corresponding nodes. For example, £-SR node V;(k) is expanded
into V(k) and V() Because each block P; ;(Fig. 5) is based on
an rlght shlfted 1dentity matrix, which has only one weight at
each row and column, a connecting structure between variable
nodes and check nodes in a block is one-to-one correspondence
(.e., if V{¥) is connected to C® in H,, Va(ﬁ) and Va(’];) are con-

nected to C{k) and C’ék) in H respectively). Also, because each
P; ; has different shifting value ¢; ;, an expanded tree structure
becomes a tangled form. Therefore, if we untie the connections,
we can get two separate tree structures as depicted in Fig. 6(c)
and each tree structure has an identical form comparing with the
tree structure in Fig. 6(a). This means that variable nodes in H
corresponding to a k-SR node in H, are also k-SR nodes and
check nodes in H corresponding to a SC (DC) node in Hj, are
also SC (DC) nodes. We can extend this proof for any value of
Z. O

V(k)
c® + D® +
V(ﬂ) [/;(0) V(o) V(k—l) Vb(k)
@
vy v
ch | + ¢+ | DpP|+ | DP|+
AR A N O S
)
Ve L4
C(k) D(k) C(k) D(k)
“(‘;) (0) V(k 1) V(0) V(k) V;(l;) V(ﬂ) V(k 1) V(ﬂ) V(k)

©

Fig. 6. Example of tree structures of k-SR node and its SC (DC) node.
(a) tree structure of k-SR node and its SC (DC) node in the base
matrix Hy, (b) example of expanded tree structure of k-SR nodes
and its SC (DC) nodes in the expanded matrix H, and (c) untied form
of (b). -

Based on Theorem 1, the problem of finding good puncturing
patterns in an expanded parity-check matrix H is equivalent to
the problem of finding good puncturing patterns in a base matrix
Hj,. Puncturing of one column (variable node) in Hy means the
puncturing of corresponding z-columns (variable nodes) in H.
When using block-unit puncturing, we can have the following
advantages:

o Simpler block-unit puncturing is available during the encod-
ing and decoding processes.

e The memory for storing puncturing patterns can be reduced
by a factor of 1/z.

e Punctured nodes can be selected regardless of the block
length only using one puncturing pattern on a base matrix.

CHOI et al.: GOOD PUNCTURING SCHEME FOR RATE COMPATIBLE LDPC CODES

Table 1. Three different puncturing patterns (single SC, grouping,
proposed) for the irregular LDPC code. Pl denotes the punctured node
index and SC denotes the number of corresponding SC nodes.

Single SC | Grouping | Proposed |

Pl | SC | PI | SC | PI | SC
14 1 13 2 14 2
15 1 16 2 16 2
17 1 18 1 18 2
18 1 19 1 20 2
20 1 21 1 22 2
21 1 22 1 24 2

V1. SIMULATIONS

In this section, we first compare the performance of LDPC
code with different number of SC nodes in the AWGN channel.
The irregular B-LLDPC code in [12], with the variable node edge
degree distribution A(z) = 0.2895x + 0.3158z2 + 0.39472°
and the check node edge degree distribution p(x) = 0.63162° +
0.3684z5 is considered as mother code. The base matrix size is
fixed as 12 x 24. For B-LDPC codes, we know that block-unit
puncturing is effective for both performance and complexity.
Hence, we used block-unit puncturing for the numerical result.
In this simulation, we used a sum-product belief-propagation
(BP) decoding algorithm with a maximum of 50-iterations. The
information size is 1080 bits. Based on the 1 /2 mother code,
2/3 rate codes were obtained by puncturing six blocks. We con-
sidered three different puncturing patterns (Table 1). The ‘Sin-
gle SC’ means the puncturing pattern was purposely chosen to
have a single SC node at each punctured node and the ‘Group-
ing’ means the puncturing patterns following the algorithm in
[4] that selects punctured nodes maintaining the recovery step
value as low as possible. A grouping algorithm in [4] makes
each punctured node have at least one SC node, but it does not
guarantee a maximal number of SC nodes. Meanwhile, the ‘Pro-
posed’ is the puncturing pattern maximizing the number of SC
nodes. The bit error rate (BER) and frame error rate (FER) per-
formance curves are shown in Fig. 7. The number of SC nodes
corresponding to each puncturing pattern are shown in Table 1.
The number of survived check nodes for the ‘Single SC’ and
the ‘Grouping’ are six and eight, respectively. Conversely, the
number of survived check nodes for the ‘Proposed’ is twelve,
the maximum possible value on the given code rate and base
matrix size. The puncturing pattern of the ‘Proposed’ can be
easily obtained by uniform puncturing every other parity node.
As shown in Fig. 7, the ‘Proposed’ shows the best performance
and the ‘Single SC’ shows the worst performance. It is noted
that these numerical results match the analytical results using
DE in the previous section. The numerical result according to
the number of DC nodes is shown in Fig. 8. The simulation is
performed for the same irregular B-LDPC code in [12] based on
the sum-product BP decoding algorithm with a maximum of 50-
iterations. The information size is 1080 bits. We compare the
puncturing patterns that have the same number of SC nodes and
different number of DC nodes to concentrate on the DC node
effect. It is noted that the performance is superior with more DC
nodes with the same number of SC nodes.

Next, we compare the performance of the proposed punc-

461

1.0E+00

+«—FER curves
1.0E-01

-"‘D-..=B

1.0E-02

LOE-03 |

Error probability

—8- FER, Single SC BER curves
—&—FER, Grouping(4]
—&—FER, Proposed
=0=BER, Single SC
=& =BER, Grouping [4]
= O =BER, Proposed

1.0E-04

1.0E-05 |

1.0E-06
1 1.25 1.5 1.75 2 2.25 2.5 2.75
SNR (dB)

Fig. 7. BER and FER performance curves with different puncturing pat-
terns for the irregular LDPC code with rate 2/3 and information length
1080 bits. The number of SC nodes corresponding to each punctur-
ing pattern are shown in Table 1.

1.0E-+00M -

1.0E02 [

—&— FER, Num.of DC=6

10B03 | g FER, Num. of DC =8

Error probability

—8— FER, Num. of DC=10
LoE04 | =0= BER,Num. of DC =6

=f&= BER, Num.ofDC=38

=0~ BER, Num.of DC=10

1.0E-05
1 1.25 15 175 2 225 25 2.75

SNR (dB)

Fig. 8. BER and FER performance curves with the same number of SC
nodes and different number of DC nodes for the irregular LDPC code
with rate 2/3 and information length 1080 bits. (Num. of DC denotes
the number of DC nodes).

turing algorithm with that of previous grouping algorithm at
various code rates. In this simulation, we use two different
LDPC codes. One is the 1/2 rate (3,6)-regular LDPC code, in
which the parity check matrix is constructed by the progressive
edge-growth (PEG) algorithm [15], and the other is the irregular
block-type LDPC code in [12]. We considered 1080 informa-
tion bit size and code rates of 0.6, 2/3, 0.7, and 0.75. Both bit
puncturing and block-unit puncturing are implemented. Table 2
shows the number of variable nodes at each recovery group for
both the proposed algorithm and the previous algorithm. Ta-
ble 3 shows the number of punctured nodes(bits or blocks) for
various code rates, respectively. The number of SC nodes(bits
or blocks) is also shown. The proposed algorithm has more SC
nodes than the previous grouping algorithm. The number of
punctured nodes of the proposed algorithm at a lower recov-
ery level is less than that of previous algorithm. That is, the
proposed algorithm has more SC nodes, while puncturing vari-

462 JOURNAL OF COMMUNICATIONS AND NETWORKS, VOL. 11, NO. 5, OCTOBER 2009

Table 2. Number of variable nodes (bits or blocks) at each recovery
group in the irregular LDPC code of 1080 information bits.

Group Grouping Proposed
Bit Block Bit Block
0-SR 1373 15 1260 14
1-SR 679 8 540 6
2-SR 105 1 270 3
3-SR 3 0 90 1
Total 2160 24 2160 24
Highest rate | 0.787 0.8 0.857 | 0.857

Table 3. Number of punctured nodes and their corresponding SC
nodes for desired code rates when using bit (block) puncturing in the
irregular LDPC code of 1080 information bits (numbers in parentheses
mean the number of blocks when block puncturing).

Rate=0.6 Rate=2/3
Grouping | Proposed | Grouping | Proposed
1-SR 360 (4) 360 (4) 540 (6) 540 (6)
2-SR 000 0(0) 0(0) 0(0)
No. of SC 633 (7) 720 (8) 765 (8) 1080 (12)
Rate=0.7 Rate=0.75
Grouping | Proposed | Grouping | Proposed
1-SR 630 (7) 540 (6) 679 (8) 540 (6)
2-SR 00 90 (1) 41 (0) 180 (2)
No. of SC 841 (8) 1080 (12) 944 (8) 1080 (12)

able nodes of the higher recovery level. At lower rates, most
of punctured nodes belong to the 1-SR group for both the pro-
posed and previous algorithm. Therefore, the proposed algo-
rithm with more SC nodes performs better at lower rates. At
higher rates, the advantage of more SC nodes is compensated
by the disadvantage of puncturing higher recovery level nodes.
Therefore, the performance of the proposed algorithm is very
close to that of previous algorithm. FER performance curves
of regular and irregular punctured LDPC codes are shown in
Figs. 9 and 10, respectively. In both figures, we can find that
the performance of proposed puncturing algorithm is better than
that of grouping algorithm at 0.6 and 2/3 rates. In contrast, the
performance of the proposed puncturing algorithm is almost the
same as that of grouping algorithm at 0.7 and 0.75 rates. In con-
clusion, 'the ‘Proposed’ algorithm is more effective for the rel-
atively lower code rate with fewer number of punctured nodes.
Furthermore, the ‘Proposed’ algorithm has another advantage,
the highest achievable code rate by puncturing is higher than
that of previous ‘Grouping’ algorithm, For the irregular LDPC
code in [12], the highest achievable code rate by the proposed
puncturing was 0.857 and the highest achievable code rate by
the grouping algorithm was 0.8. This expands the range of code
rate compatibility, one of important factors for a rate compatible
code.

VII. CONCLUSION

In this paper, we used the DE technique to analyze the pos-
itive effect of multiple survived check nodes and dead check
nodes. We showed that the mean of LLR passed between vari-
able nodes and check nodes converges faster as the number of
survived check nodes and the number of dead check nodes in-
creases. We also showed that the analysis results are valid for
both bit-unit and block-unit puncturing. Based on these analyti-

1.0E-01

FER

1.0E-02

“8= Grouping (R=0.6)

=& Proposed (R=0.6)
=0~ Grouping (R=2/3)
HOE0 —®— Proposed (R=2/3)
=0~ Grouping (R=0.7)
~8— Proposed (R=0.7) ‘\ ‘\
1.0E-04 A 3
1 1.25 1.5 1.75 2 2.25 2.5 2.75 3 3.25 3.5

SNR (dB)

Fig. 9. FER performance curves for the regular (3,6) LDPC code with
rates 0.6, 2/3, 0.7 respectively (information length=1080 bits and bit
puncturing).

Grouping (R=0.6)
—— Proposed (R=0.6)
—a& - Proposed/Block (R=0.6)
=0 = Grouping (R=2/3)

1.0E-01

m 1.0E-02 | —@=— Proposed (R=2/3)

8 —& - Proposed/block (R=2/3)
=0~ Grouping (R=0.7)
—fi— Proposed (R=0.7)
1.0E-03 | —gg - Proposed/block (R=0.7)
=& = Grouping (R=0.75)
—&— Proposed (R=0.75)

—& - Proposed/Block (R=0.75)|

1.0E-04
1 1.25 15 175 2 225 25 2.7 3 3.25
SNR (dB)

Fig. 10. FER performance curves for the irregular LDPC code with
rates 0.6, 2/3, 0.7, 0.75 respectively (information length=1080 bits).
Grouping means the previous algorithm with bit puncturing, Pro-
posed means the new algorithm with bit puncturing, and Pro-
posed/BLOCK means the new algorithm with block puncturing.

cal results, a new algorithm to choose good puncturing patterns
for regular and irregular LDPC codes was proposed. It maxi-
mizes the number of SC nodes and DC nodes. Numerical re-
sults on the regular (3,6) LDPC code and the irregular LDPC
code in IEEE P802.16e/D9 matched the analytical results. It is
noted that the proposed algorithm performs better than the pre-
vious puncturing algorithm at medium and low rates.

REFERENCES

[1] J. Hagenauer, “Rate-compatible punctured convolutional codes (rcpc
codes) and their applications,” IEEE Trans. Commun., vol. 36, pp. 389—
400, Apr. 1988.

[2]1 J.Liand K. Narayanan, “Rate-compatible low-density parity-check codes
for capacity-approaching ARQ scheme in packet data communications,”
in Proc. CHIT, Nov. 2002.

[3] T.Tianand C. R. Jones, “Construction of rate-compatible LDPC codes uti-

CHOI et al.: GOOD PUNCTURING SCHEME FOR RATE COMPATIBLE LDPC CODES

lizing information shortening and parity puncturing,” EUR. Wireless Com-
mun. Netw., vol. 5, pp. 1-7, 2005.

[4] J. Ha,J. Kim, D. Klinc, and S. W. McLaughlin, “Rate-compatible punc-
tured low-density parity-check codes with short block lengths,” IEEE
Trans. Inf. Theory, vol. 52, pp. 728-738, Feb. 2006.

[5]1 D.Klinc, J. Ha, J. Kim, and S. W. McLaughlin, “Rate-compatible punc-

tured low-density parity-check codes for ultra wide band systems,” in
Proc. IEEE GLOBECOM, Nov. 2005, pp. 3856-3860.

[6] E.Y.Choi,S.B. Suh, and J. H. Kim, “Rate-compatible puncturing for low-
density parity-check codes with dual-diagonal parity structure,” in Proc.
IEEE PIMRC, Sept. 2005, pp. 2642-2646.

[71 S.H. Choi, Y. S. Shin, J. Heo, K. H. Cho, and M. S. Oh, “Effective punc-

turing schemes for block-type low-density parity-check codes,” in Proc.

IEEE VTC-spring, Apr. 2007, pp. 1841-1845.

M. R. Yazdani and A. H. Banihashemi, “On construction of rate-

compatible low-density parity-check codes,” IEEE Trans. Commun.,

vol. 8, pp. 159-161, Mar. 2004.

[91 T.Richardson and R. Urbanke, “The capacity of low-density parity-check

codes under message-passing decoding,” IEEE Trans. Inf. Theory, vol. 47,

pp. 599-618, Feb. 2001.

S. Y. Chung, T. J. Richardson, and R. L. Urbanke, “Analyisis of sum-

product decoding of low-density parity-check codes using a Gaussian ap-

proximation,” IEEE Trans. Inf. Theory, vol. 47, pp. 657-670, Feb. 2001.

S. H. Myung, K. C. Yang, and J. Y. Kim, “Quasi-cyclic ldpc codes for fast

encoding,” IEEE Trans. Inf. Theory, vol. 51, pp. 2894-2901, Aug. 2005.

[12] L. . W. Group, “Part 16: Air interface for fixed and mobile broadband

wireless access systems,” 2005.

C. Zheng, N. Miyazaki, and T. Suzuki, “Rate compatible low-density

parity-check codes based on progressively increased column weights,” IE-

ICE Trans. Fundamentals, vol. E89, pp. 2493-2500, Oct. 2006.

T. Richardson and R. Urbanke, “Efficient encoding of low-density parity-

check codes,” IEEE Trans. Inf. Theory, vol. 47, pp. 638-656, Feb. 2001.

X. Y. Hu, E. Eleftheriou, and D. M. Amold, “Regular and irregular pro-

gressive edge-growth tanner graphs,” IEEE Trans. Inf. Theory, vol. 51,

Pp- 386-398, Jan. 2005.

(8]

[10]

(1]

[13]

[14]

[15]

Sunghoon Choi received the B.S. degrees in Electron-
ics Engineering from Konkuk university, Seoul, Korea
in 2005. He is presently an M.S. student in electron-
ics engineering from Konkuk university, Seoul, Korea.
His research interests include LDPC codes and Turbo
codes. He is presently with the LG electronics Inc.,
Seoul, Korea.

Sungroh Yoon received the B.S. degree in Electrical
Engineering form Seoul National University, Seoul,
Korea, in 1996 and the M.S. and Ph.D. degrees in
electrical engineering from Stanford University, Stan-
ford, USA in 2002 and 2006, respectively. From 2006
to 2007, he was with Intel Corporation, Santa Clara,
USA, where he participated in developing Intel Atom
and Core i7 microprocessors. Previously he held re-
search positions at Stanford University and Synopsys
Inc., Mountain View, USA. He is currently an Assis-
tant Professor of Electrical Engineering at Korea Uni-

versity, Seoul, Korea.

463

Wonjin Sung received his B.S. degree from Seoul Na-
tional University, Korea in 1990, and the M.S. and
Ph.D. degrees in Electrical Engineering from Uni-
versity of Michigan, Ann Arbor, MI, in 1992 and
1995, respectively. From January 1996 through Au-
gust 2000, he worked at Hughes Network Systems,
Germantown, MD, USA, where he participated in
development projects for cellular systems including
the IS-136 base station modems and low-complexity
channel decoders. Since September 2000, he has been

s with the Department of Electronic Engineering at So-
gang University, Seoul Korea, where he is currently an Associate Professor.
His research interests are in the areas of mobile wireless transmission, statistical
communication theory, and channel coding.

Hongkyu Kwon received the B.S. degree in Industrial
Engineering from Dongguk University, Seoul, Korea
in 1995 and the M.S. and Ph.D. degrees in industrial
system engineering from the University of Southern
California, Los Angeles, USA in 1998 and 2002, re-
spectively. During 2002-2005, he was a Senior and
Chief Research Engineer at LG Electronics produc-
tion research center. During the 2005-2007, he was an
Adjunct Professor in the Industrial Management Engi-
neering dept., Chungju National University, Chungju,
Korea. He is presently an Assistant Professor in the
industrial management engineering dept., Namseoul University, Chunan, Ko-
rea. His research interests include CAD/CAM, rapid prototyping, and digital
manufacturing and production.

Jun Heo received the B.S. and M.S. degrees in Elec-
tronics Engineering from Seoul National University,
Seoul, Korea in 1989 and 1991, respectively and the
Ph.D. degree in Electrical Engineering from the Uni-
versity of Southern California, Los Angeles, USA in
2002. During the 1991-1997, he was a senior research
engineer at LG Electronics Co., Inc. During the 2003-
2006, he was an Assistant Professor in the Electronics
Engineering Department, Konkuk University, Seoul,
Korea. He is presently an Associate Professor in the
School of Electrical Engineering at Korea University,
Seoul, Korea. His research interests include channel coding theory and digital
communication systems.

