• Title/Summary/Keyword: blending rate

Search Result 172, Processing Time 0.024 seconds

Preparation and Effects of Low Foaming Acidic Degreasing Agents for Aluminum (알루미늄용 저기포성 산성탈지제의 제조와 그의 탈지효과)

  • Ha, Kyung-Jin;Park, Hong-Soo;Bae, Jang-Soon;Kim, Young-Keun
    • Journal of the Korean Applied Science and Technology
    • /
    • v.14 no.3
    • /
    • pp.71-77
    • /
    • 1997
  • Low foaming acidic degreasing agent(LFADAs) were prepared by blending sorbitol, n-octanoic acid, MJU-100A, Tetronix T-701, Na-dioctyl sulfosuccinate, Demol C, and phosphoric acid. The physical properties of LFADAs tested with aluminum specimen showed the following results ; when 3wt% LFADA-6 was performed at $70^{\circ}C$, the degreasing rate was 95% which is comparitively good, and the percentage of etching was 0.275% which was found to be less than that of commercialized product. When 20wt% of LFADA-6 was added at $65^{\circ}C$, the percentage of derusting was 92% and the good defoaming effect proved by following low foaming power tests respectively : Ross and Miles, and Ross and Clark methods.

The Use of Chemical Additives to Protect SBS Rubbers Against Ozone Attack

  • Moakes, C.A.
    • Elastomers and Composites
    • /
    • v.34 no.2
    • /
    • pp.177-182
    • /
    • 1999
  • SBS thermoplastic elastomers offer an inexpensive alternative to vulcanised rubbers for many undemanding applications. They are, however, particularly susceptible to attack from atmospheric ozone leading to cracking as soon as any strain is applied. In most rubber applications some strain is unavoidable. In this paper a compounding approach to protecting SBS thermoplastic rubbers against ozone is described. An explanation is offered for why a protective effect Is observed only when certain combinations of additive are used. SBS elastomers are the most affordable class of thermoplastic rubbers. To achieve finished products resistant to ozone and without compromising the light colours often demanded, recourse must be made to blending with other saturated elastomers or replacement by hydrogenated (SEBS) types. The latter is a significantly more expensive alternative. Under laboratory conditions where the rate of ozone attack is increased by several decades, unprotected SBS begins to crack within a few hours. Several different protective agents are examined here, the best of which, a cyclic enol ether, $Vulkazon^{(R)}$ AFD, can extend the resistance to any cracking to several weeks by the use of a few percent by weight of additive. The systems reported neither discolour the polymer nor stain other materials with which it may be in contact. Use of the protective systems described here could enable SBS elastomers to compete in many applications with the more expensive SEBS polymers.

  • PDF

Development of Control Program for Methane-hydrogen Fuel Conversion Based on Oxygen Concentration in Exhaust Gas (배기가스 내 산소 농도 기반 메탄-수소 연료 전환 제어 프로그램 개발)

  • EUNJU SHIN;YOUNG BAE KIM
    • Journal of Hydrogen and New Energy
    • /
    • v.34 no.1
    • /
    • pp.38-46
    • /
    • 2023
  • Carbon neutrality policies have been strengthened to reduce emissions, and the importance of technology road maps has been emphasized. In the global industrial boiler market, carbon neutrality is implemented through fuel diversification of methane-hydrogen mixture gas. However, various problems such as flashback and flame unstability arise. There is a limit to implementing the actual system as it remains in the early stage. Therefore, it is necessary to secure the source technology of methane-hydrogen hybrid combustion system applicable to industrial fields. In this study, control program for methane-hydrogen fuel conversion was developed to expect various parameters. After determining the hydrogen mixing ratio and the input air flow, the fuel conversion control algorithm was constructed to get the parameters that achieve the target oxygen concentration in the exhaust gas. LabVIEW program was used to derive correlations among hydrogen mixing rate, oxygen concentration in exhaust gas, input amount of air and heating value.

Analyzing the Influence of Spatial Sampling Rate on Three-dimensional Temperature-field Reconstruction

  • Shenxiang Feng;Xiaojian Hao;Tong Wei;Xiaodong Huang;Pan Pei;Chenyang Xu
    • Current Optics and Photonics
    • /
    • v.8 no.3
    • /
    • pp.246-258
    • /
    • 2024
  • In aerospace and energy engineering, the reconstruction of three-dimensional (3D) temperature distributions is crucial. Traditional methods like algebraic iterative reconstruction and filtered back-projection depend on voxel division for resolution. Our algorithm, blending deep learning with computer graphics rendering, converts 2D projections into light rays for uniform sampling, using a fully connected neural network to depict the 3D temperature field. Although effective in capturing internal details, it demands multiple cameras for varied angle projections, increasing cost and computational needs. We assess the impact of camera number on reconstruction accuracy and efficiency, conducting butane-flame simulations with different camera setups (6 to 18 cameras). The results show improved accuracy with more cameras, with 12 cameras achieving optimal computational efficiency (1.263) and low error rates. Verification experiments with 9, 12, and 15 cameras, using thermocouples, confirm that the 12-camera setup as the best, balancing efficiency and accuracy. This offers a feasible, cost-effective solution for real-world applications like engine testing and environmental monitoring, improving accuracy and resource management in temperature measurement.

Practical designs for mixture component-process experiments (실용적인 혼합물 성분 공정변수 실험설계)

  • Lim, Yong-B.
    • Journal of Korean Society for Quality Management
    • /
    • v.39 no.3
    • /
    • pp.400-411
    • /
    • 2011
  • Process variables are factors in an experiment that are not mixture components but could affect the blending properties of the mixture ingredients. For example, the effectiveness of an etching solution which is measured as an etch rate is not only a function of the proportions of the three acids that are combined to form the mixture, but also depends on the temperature of the solution and the agitation rate. Efficient designs for the mixture components-process variables experiments depend on the mixture components-process variables model which is called a combined model. We often use the product model between the canonical polynomial model for the mixture and process variables model as a combined model. In this paper we propose three starting models for the mixture components-process variables experiments. One of the starting model we are considering is the model which includes product terms up to cubic order interactions between mixture effects and the linear & pure quadratic effect of the process variables from the product model. In this paper, we propose a method for finding robust designs and practical designs with respect to D-, G-, and I-optimality for the various starting combined models and then, we find practically efficient and robust designs for estimating the regression coefficients for those models. We find the prediction capability of those recommended designs in the case of three components and three process variables to be good by checking FDS(Fraction of Design Space) plots.

A Study on the Fabrication of Reinforced Reaction Bonded Alumina Ceramics (반응결합 강화 알루미나세라믹스의 제조에 관한 연구)

  • 김일수;강민수;박정현
    • Journal of the Korean Ceramic Society
    • /
    • v.35 no.4
    • /
    • pp.311-318
    • /
    • 1998
  • The reaction bonded alumina ceramics with reinforced particles which have low shrinkage were pro-duced by blending of SiC or TiC or ZrO2 powders to the mixture of Al metal and Al2O3 powder. The powd-ers were attrition milled isostantically pressed and preheated tio 110$0^{\circ}C$ with a heating rate of $1.5^{\circ}C$/min The specimens were then sintered at the temperature range 1500 to 1$600^{\circ}C$ for 5 hours with a heating rate of 5$^{\circ}C$/min. The specimens showed 5-9% weight gain and 2-9% dimensional expansion through the complete oxidation of Al after preheating up to 11--$^{\circ}C$ the overall dimensional change of the specimens after the reaction sintering at 1500-1$600^{\circ}C$ was 6-12% The maximum densities were 92% theoretical. The fine grain-ed(average grain size :0.4 ${\mu}{\textrm}{m}$) microstructure were observed in the specimen with ZrO2 and SiC. But the microstructure of specimen with TiC was relatively coarse.(average grain size : 2.1 ${\mu}{\textrm}{m}$) The mullite phase was formed by the reaction of Al2O3 and SiO2 in a specimen with SiC. In the TiC contained specimen TiC was oxidized into TiO2 and finally reacted with Al2O3 to form Al2TiO5 during sintering.

  • PDF

A study on performance and smoke emission characteristics by blending low purity methanol in a DI diesel engine with the EGR rates of 0, 12.8 and 16.5%

  • Syaiful, Syaiful;Bae, Myung-Whan
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.37 no.7
    • /
    • pp.701-710
    • /
    • 2013
  • The purpose of this study is to investigate experimentally the effect of low purity methanol (LPM) on performance and smoke emission characteristics by using a four-cycle, four-cylinder, water-cooled, direct injection diesel engine with EGR system. The experiments are performed by the change of engine load in the engine load ranges of 25 to 100% with an interval of 25% under the constant engine speed of 2000 rpm. The LPM in the fuel blends contained 24.88% water by volume. The blended fuel ratios of diesel oil to LPM are maintained at 100/0, 95/5, 90/10 and 85/15% on the volume basis. In this paper, EGR rates are varied in three conditions of 0, 12.8 and 16.5%. The result shows that the brake power of a blended fuel with 15% LPM is reduced more 11.1% than that of the neat diesel oil at the full load with the EGR rate of 16.5%. At this condition, also, the brake specific fuel consumption (BSFC) is increased by 3.2%, the exhaust gas temperature is decreased by 10.7%, the smoke opacity is decreased by 18.7% and the brake thermal efficiency is increased by 7.3%. The sharp reduction of smoke opacity for a blended fuel with the LPM content of 15% at the full load without EGR system is observed by 68.4% compared with that of the neat diesel oil due to the high oxygen content of LPM.

Mechanical Properties of Bentonite-Polyethylene Composites (Bentonite와 폴리에틸렌을 이용한 復合材의 機械的 性質)

  • Moon Tak Jin;Han Ki Chul
    • Journal of the Korean Chemical Society
    • /
    • v.21 no.5
    • /
    • pp.379-383
    • /
    • 1977
  • Since the organophilic bentonite disperses well in polymer matrix, a composite material of polymer and bentonite was studied for its mechanical properties. To increase the degree of dispersion and the bond in forces to the polymer matrix, bentonite, encapsulated by imidazoline, was used as a filler. Polyethylene powder of particle size of 100 mesh was used, and organophilic bentonite, so-called bentone, whose particle size was 250 mesh was also used in this experiment. V-type mixer was used for mixing and Banbury mixer was used for melt-blending. The sample specimen were made by heating the mixture in the plate press, and the specimen were formed as a sheet, exactly the same as the mold on the plate. Tensile strength, bending strength and compressive strength were studied specially. Tensile strength, elongation rate, bending strength and bending rate at constant pressure were decreased as the filler content increased. Compressive strength was increased as the filler content increased.

  • PDF

Determination of Optimal Mixing Ratio of Phosphorescent Pigment to Develop Phosphorescent Paint for Road Line Marking (도로의 축광차선 도료 개발을 위한 축광안료 최적 배합비 산정에 관한 연구)

  • Lee, Yong Mun;Kim, Sang Tae;Kim, Heung Rae
    • International Journal of Highway Engineering
    • /
    • v.17 no.5
    • /
    • pp.67-73
    • /
    • 2015
  • PURPOSES : This study was conducted to derive the optimum mixing ratio of phosphorescent pigment for the development of phosphorescent line marking. METHODS: In this study, we utilized a literature review and case study methodology, to describe the domestic and foreign state of practice for the production and mixing of phosphorescent pigment for use in line marking. The optimal mixing ratio was derived by comparing the reduction in luminance over time for the various phosphorescent pigment mixing ratios identified in the literature. In addition, performance and construction characteristics were analyzed using field testing techniques. RESULTS : The results were as follows: 1) the results of the luminance performance standards tests showed that all of the phosphorescence test specimens satisfied the phosphorescent fire protection standard. As the phosphorescent pigment mixing ratio increased, the luminance value increased, 2) the luminance reduction rate was minimum at the mixing ratio of 50%. However, when compared to a mixing ratio 40%, a small difference was recorded, the luminance reduction rate from the mixing ratio of 40% is judged as being converged. Therefore, in view of the economic efficiency, it was determined that the optimal mixing ratio was 40%, 3) as a result of construction on the field, a mixing ratio of 40% was found to have a higher luminance value than the general line marking for up to three hours after sunset, 4) it was found that the phosphorescent line markings without glass beads spraying had a higher luminance value than the phosphorescent line markings with glass beads spraying. CONCLUSIONS : Through the results of the basic experiments of the line markings obtained by blending a phosphorescent pigment, the results could be applied to play an important role in the development of phosphorescent line marking paint technology and in establishing application planning for on-site construction characteristics.

Effect of CST on atopic dermatitis related inflammatory cytokines (청기소독탕(淸肌消毒湯)이 아토피피부염 염증 관련 인자에 미치는 영향)

  • Kim, Hye-Rim;Gim, Seon-Bin;Yun, Mi-Young;Lee, Ki-Moo;Kim, Dong-Hee
    • Journal of Haehwa Medicine
    • /
    • v.20 no.2
    • /
    • pp.41-52
    • /
    • 2012
  • In vitro tests were performed using CST to investigate its role on oxidative damages and inflammatory cytokines. 90% or higher cell viability was observed in CST treated groups from 25 to 200 ${\mu}g/m{\ell}$ using Raw 264.7 cells. CST showed dose-dependent DPPH scavenging activity, with 91.3% and 92.2% scavenging activities at 400 and 800 ${\mu}g/m{\ell}$ concentrations, respectively. CST showed dose-dependent suppression activity of ROS production, especially at 200 ${\mu}g/m{\ell}$ of 41.3%. CST decreased NO production activity, with significant decrease of 16.2% and 33.5% at 100 and 200 ${\mu}g/m{\ell}$ concentrations, respectively. IL-$1{\beta}$, IL-6, MCP-1 production rate were significantly decreased by 30.0%, 27.2%, 22.1% when Raw 264.7 cells were treated with LPS and with CST of 200 ${\mu}g/m{\ell}$. Also, TNF-${\alpha}$ production rate was decreased by 28.6%. The results above indicated therapeutic effect of CST on the AD through anti-oxidative and immune modulatory effect. Various blending of drug substances with CST should be clinically tested.