• Title/Summary/Keyword: blasting rock

Search Result 441, Processing Time 0.022 seconds

Status of Researches of Excavation Damaged Zone in Foreign Underground Research Laboratories Constructed for Developing High-level Radioactive Waste Disposal Techniques (고준위방사성폐기물 처분 기술개발을 위해 건설된 해외 지하연구시설에서의 암반손상대 연구 현황)

  • Park, Seunghun;Kwon, Sangki
    • Explosives and Blasting
    • /
    • v.35 no.3
    • /
    • pp.31-54
    • /
    • 2017
  • In the countries operating nuclear reactors, the development of high-level radioactive waste(HLW) disposal technique is considered as an urgent and important issue for sustainable utilization of nuclear energy. In Korea, in which a low and intermediate radioactive waste repository is already operating, the construction of an underground research laboratory for in situ validation studies became a matter of interest with increasing concerns on the management of HLW. In order to construct and to operate an underground HLW repository safely in deep underground, the stability of rock mass should be guaranteed. As an important factor on rock stability, excavation damaged zone (EDZ) has been studied in many underground research laboratories in foreign countries. For accurate evaluation of the characteristics and effects of EDZ under disposal condition, it is required to use reliable investigation method based on the analysis of previous studies in similar conditions. In this study, status of foreign underground research laboratories in other countries, approaches for investigation the characteristics, size, and effect of EDZ, and major findings from the researches were surveyed and reported. This will help the accomplishment of domestic researches for developing HLW management techniques in underground research laboratory.

Dynamic Frictional Behavior of Saw-cut Rock Joints Through Shaking Table Test (진동대 시험에 의한 편평한 암석 절리면의 동적 마찰거동 특성)

  • Park Byung-Ki;Jeon Seokwon
    • Tunnel and Underground Space
    • /
    • v.16 no.1 s.60
    • /
    • pp.58-72
    • /
    • 2006
  • In recent years, not only the occurrences but the magnitude of earthquakes in Korea are on an increasing trend and other sources of dynamic events including large-scale construction, operation of hi띤-speed railway and explosives blasting have been increasing. Besides, the probability of exposure fir rock joints to free faces gets higher as the scale of rock mass structures becomes larger. For that reason, the frictional behavior of rock joints under dynamic conditions needs to be investigated. In this study, a shaking table test system was set up and a series of dynamic test was carried out to examine the dynamic frictional behavior of rock joints. In addition, a computer program was developed, which calculated the acceleration and deformation of the sliding block theoretically based on Newmark sliding block procedure. The static friction angle was back-calculated by measuring yield acceleration at the onset of slide. The dynamic friction angle was estimated by closely approximating the experimental results to the program-simulated responses. As a result of dynamic testing, the static friction angle at the onset of slide as well as the dynamic friction angle during sliding were estimated to be significantly lower than tilt angle. The difference between the tilt angle and the static friction angle was $4.5\~8.2^{\circ}$ and the difference between the tilt angle and the dynamic friction angle was $2.0\~7.5^{\circ}$. The decreasing trend was influenced by the magnitude of the base acceleration and inclination angle. A DEM program was used to simulate the shaking table test and the result well simulated the experimental behavior. Friction angles obtained by shaking table test were significantly lower than basic friction angle by direct shear test.

Evaluation of Rock Damage Zone Using Seismic Logging Method (탄성파 점층법을 이용한 암반손상대 평가)

  • Kang Seong-Seung;Hirata Atsuo;Obara Yuzo;Haraguchi Naoyuki
    • Tunnel and Underground Space
    • /
    • v.16 no.1 s.60
    • /
    • pp.50-57
    • /
    • 2006
  • Development of structures such as slope and tunnel, waste disposal, oil and LPG storages, and underground power house and so on, is increasing with the year. The method for appropriate estimation of rock state such as fresh or damaged rocks is also requested with increasing structural development. On these purposes, seismic logging system, which is a simple and easy way for handling as well as small and light, has been developed. Seismic logging method is one of logging tests, which is able to evaluate the state of rock mass with various shapes and is possible to obtain the relatively accuracy data at situ state. In addition, seismic logging method is at to apply to estimate structural behavior, before and after support installed. According to the results obtained from this study, firstly, it is clear that the extent of damage in rock slope due to blasting is able to be evaluated with quantity using seismic logging method, moreover to decide the damage zone in rock slope reasonably. Secondly, it is expected that installing depth of support is able to be decided more effectively and economically, using the results of seismic logging data. Finally, seismic logging method is also able to be applied safety supervision of structures, before and after support installed.

Characteristics of velocity-dependent shear behavior of saw-cut rock joints at different shear velocities (편평한 암석절리면의 속도 의존적 전단거동 특성)

  • Park, Byung-Ki;Lee, Chang-Soo;Jeon, Seok-Won
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.9 no.2
    • /
    • pp.121-131
    • /
    • 2007
  • Recently, the probability of rock joints being exposed to free faces is getting higher for the scale of rock mass structures gets larger. Also, the frequency of occurring dynamic events such as earthquakes and blasting has been increasing. Thus, the shear behavior of rock joints under different conditions needs to be investigated. In this study, a series of direct shear tests were carried out under various conditions to examine the velocity-dependent shear behavior of saw-cut rock joints. Two types of direct shear test were carried out. The first was to examine the velocity-dependent shear behavior of saw-cut rock joints at seven different shear velocities, each with three different normal stresses. The second was to examine the shear behavior of saw-cut rock joints when three different instantaneous shear velocities changed. As a result, the coefficient of friction was affected by normal stress. The breakpoint velocity, the point when the change of shear velocity starts to affect the frictional behavior, became lower as normal stress increased. Also, as the shear velocity became lower, the degree of stress-drop on stick-slip behavior became larger. As a result of examining the changes of friction coefficient, velocity weakening (decrease of friction coefficient) was observed. The decrement of friction coefficient due to the changes of shear velocity under slow shear velocity was larger than that under fast shear velocity.

  • PDF

A study on the utilization of abrasive waterjet for mechanical excavation of hard rock in vertical shaft construction (고강도 암반에서 수직구 기계굴착을 위한 연마재 워터젯 활용에 관한 연구)

  • Seon-Ah Jo;Ju-Hwan Jung;Hee-Hwan Ryu;Jun-Sik Park;Tae-Min Oh
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.25 no.5
    • /
    • pp.357-371
    • /
    • 2023
  • In cable tunnel construction using TBM, the vertical shaft is an essential structure for entrance and exit of TBM equipment and power lines. Since a shaft penetrates the ground vertically, it often encounters rock mass. Blasting or rock splitting methods, which are mainly used to the rock excavation, cause public complaints due to the noise, vibration and road occupation. Therefore, mechanical excavation using vertical shaft excavation machine are considered as an alternative to the conventional methods. However, at the current level of technology, the vertical excavation machine has limitation in its performance when applied for high strength rock with a compressive strength of more than 120 MPa. In this study, the potential utilization of waterjet technology as an excavation assistance method was investigated to improve mechanical excavation performance in the hard rock formations. Rock cutting experiments were conducted to verify the cutting performance of the abrasive waterjet. Based on the experimental result, it was found that ensuring excavation performance with respect to changing in ground conditions can be achieved by adjusting waterjet parameters such as standoff distance, traverse speed and water pressure. In addition, based on the relationship between excavation performance, uniaxial compressive strength and RQD, it was suggested that excavation performance could be improved by artificially creating joints using the abrasive waterjet. It is expected that these research results can be utilized as fundamental data for the introduction of vertical shaft excavation machines in the future.

Stability Analysis for Two Arch Excavation of a Tunnel Portal (터널 갱구 2 Arch 굴착에 따른 안정성 해석)

  • 이길재;유광호;박연준;채영수
    • Tunnel and Underground Space
    • /
    • v.12 no.3
    • /
    • pp.179-188
    • /
    • 2002
  • This study is to understand the effect of the vibration and the stress changes due to the excavation of 2 arch parts of a tunnel, which is a Gyungbu Express Railway tunnel, on the tunnel itself and adjacent slopes in advance, and to analyze the stability. For the estimation of ground conditions, borehole tests, borehole camera logging and seismic logging were performed. Ground properties at a specific location were determined as input constants by performing 2 dimensional analyses with possible ranges of uncertain ground properties. Static and pseudo-static (due to blasting vibration) factors of safety were calculated. The behavior of the tunnel and its vicinity due to the tunnel excavation were predicted by 3 dimensional analyses. It was also tested whether the support system was proper.

An Efficient Blast Design using Reliability Index (신뢰성지수를 이용한 효율적인 발파설계)

  • 박연수;박선준;강성후
    • Journal of KSNVE
    • /
    • v.8 no.5
    • /
    • pp.821-831
    • /
    • 1998
  • The actual ground vibrations due to NATM and foundation blasting at Seoul(weathered rock), Pusan(weathered rock) and Youngkwang(quartz andesite) have been measured, and the data were analyzed using reliability index($\beta$) to determinate the vibration equations and the maximum charge weight for efficient blast. These were suggested with the division of ultimate limit state($\beta$=0), serviceability limit state($\beta$=1.28) and safety state($\beta$=3), respectively. The reliability index 0 mean 50% data line obtained by the least squares best-fit line. The reliability index 1.28 and 3 represent bounds below 90% and 99.9% of the data, respectively. In this study, reliability index $\beta$=1.28 with security and economy was suggested. The maximum charge weight equations for efficient blast were obtained in W=(Vc/384.90)1.5151.D3(Seoul), W=(Vc/579.82)1.4706.D3(Pusan). W=(Vc/1654.01)1.3456.D3(Youngkwang), and the blast vibration equatiions in V=385(SD)-1.98(Seoul), V=580(SD)-2.04(Pusan), V=1654(SD)-2.23(Youngkwang), respectively. From this study, inference and analysis methods of vibration equations using reliability theory were established.

  • PDF

Slope stability associated with construction (건설공사와 사면 안정성)

  • Baek, Yong;Kim, Gyo-Won;Koo, Ho-Bon
    • The Journal of Engineering Geology
    • /
    • v.10 no.2
    • /
    • pp.1-17
    • /
    • 2000
  • In this study, 270 cut-slopes are investigated and statistical analyses are performed. More than 84% of unstable slopes are rock slopes or rock-soil mixed slopes, and 72% of the slopes have 10 to 30 meter in height. And in order to clarify the cause of failure, 3 slopes which have been failed are back-analysed by using the computer programs such as DIPS, UDEC and PCSTABL5M. A heavy rainfall during rainy season is a main cause of slope failure, and a blasting vibration during construction could also give a significant influence on the slope instability.

  • PDF

Comparison of Fragmentation Performance of Two Different Blast Patterns (두 가지 발파 패턴의 파쇄 성과 비교)

  • Rai, Piyush;Yang, Hyung-Sik
    • Tunnel and Underground Space
    • /
    • v.20 no.5
    • /
    • pp.325-331
    • /
    • 2010
  • In the present research paper large scale blasting was conducted on two different firing patterns, namely, straight V type and skewed V type pattern on the same sandstone overburden bench with similar explosives. The post-blast fragmentation assessments were made by use of digital imaging technique. The total cycle time of 10 $m^3$ rope shovels was also recorded in the field. The results reveal improvements in the fragmentation and excavator performance results for the blasts fired on skewed V type pattern. The paper discusses the skewed V firing pattern and the reasons for its superior performance vis-$\grave{a}$-vis the straight V type pattern.

A Study on the Effectiveness of a Guide Hole on Crack Growth Control in Blasting (발파에서 가이드공의 균열제어 유효성에 관한 실험적 연구)

  • Lee, Hee-Gwang;Kim, Seung-Kon;Cho, Sang-Ho
    • Tunnel and Underground Space
    • /
    • v.20 no.2
    • /
    • pp.125-130
    • /
    • 2010
  • Model blast experiments of mortar blocks were performed to investigate the effect of the guide hole on crack growth. The mortar block specimens have a blast charge hole and 8 guide holes. Two of circular guide hole, notched guide hole, diamond shaped guide hole and diamond shaped guide holder are installed around 110 mm, 165 mm and 220 mm apart from the charge hole for each specimen. From the blast experiments, it was revealed that all the guide hole used in this study were effective for controlling the crack growth at the fracture control.