• Title/Summary/Keyword: blast-furnace slag powder

Search Result 260, Processing Time 0.024 seconds

Strength Development of Fly ash Substituted Concrete due to Blast Furnace Slag Powder and Gypsum Addition (고로슬래그 미분말 및 석고혼입에 따른 플라이애시 치환 콘크리트의 강도발현 특성)

  • Han, Cheon-Goo;Han, Min-Cheol;Jeon, Kyu-Nam
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.5 no.2
    • /
    • pp.97-104
    • /
    • 2010
  • In this study, the effect of blast furnace slag and gypsum addition on strength development of fly ash substituted concrete is investigated experimentally. As a result, the fluidity represented a similar or larger level than that of OPC but showed a tendency to decrease the fluidity according to the increase in the replacement level of BS and GS for the FA replacement concrete. In the case of the air content, although it showed a larger decrease compared to that of OPC, it also represented that BS and GS did not affect the air content significantly. Regarding the compressive strength in the case of the replacement of BS and GS for the FA 10% replacement concrete, it showed a higher early strength than OPC. Whereas, in the case of the BS 5% replacement and GS 1% incorporation for the FA 10% replacement concrete showed the most excellent performance due to its high strength. In the correlation of the compressive strength according to the kinds of admixtures, it was evident that the GS incorporation played an important role in high strength gain.

  • PDF

An Experimental Study on the Microstructure Characteristics of Cementitious Composites by MIP (MIP를 통한 혼합 시멘트계 재료의 미세구조 특성에 관한 실험적 연구)

  • Kim, Tae-Sang;Jung, Sang-Hwa;Chae, Seong-Tae;Lee, Bong-Chun;Woo, Young-Je;Song, Ha-Won
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.533-536
    • /
    • 2008
  • Recently, in Korea, there has been an increasing number of research papers published which are to improve durability of concrete, particularly by analyzing correlation between diffusivity of chloride and porosity/pore size distribution. In these studies, such test methods as mercury intrusion porosimetry(MIP), gas adsorption or image analysis method are used to analyze the microstructure of materials while MIP is most widely used for concrete. This study analyzes the results of porosity and pore size distribution of paste and concrete adding fly ash or blast furnace slag by using MIP equipment which is widely used for determining micro-porosity structure of cementitious materials. A variation in porosity and pore size distribution at the curing day 3, 7 and 28 has been observed by using MIP equipment for cement paste 35%, 40%, 45%, 50%, 55%, 60% of W/C when using $300kg/m^3$ of cement, 35%, 45%, 55% of W/C when replaced 60% with blast-furnace slag, and 35%, 45%, 55% of W/C when replaced 30% with fly ash. For long-term water cured normal OPC concrete and mixed concrete replaced 60% with blast-furnace slag powder, micro-structure of the sample has been analyzed by using MIP equipment when W/C indicated 40%, 45%, 50% respectively and the binder varied $300kg/m^3$, $350kg/m^3$, $400kg/m^3$, and $450kg/m^3$.

  • PDF

A fundamental study on the sulphate-resistant mortar using waste glass fine powder and meta-kaolin according to various fine aggregates (잔골재 종류에 따른 폐유리 미분말 및 메타카올린을 사용한 내황산염 모르타르에 관한 기초적 연구)

  • Jeong, Dongwhan;Park, Junhui;Ahn, Taeho;Park, Yeongsik;Sho, Kwangho
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.27 no.3
    • /
    • pp.115-121
    • /
    • 2017
  • The degradation of the concrete due to deterioration factors, such as corrosion of steel bars, cracks and structural strength of reinforced concrete structures, is a social problem. Especially, concrete structures constructed in seawater, underground water, waste water treatment facilities and sewerage are subject to chemical attack by acid and sulphate. Therefore, this study was conducted to compare sulfated glass and fine aggregate of slag using waste glass fine powder and meta kaolin. The results showed that the slag fine aggregate showed better sulfate resistance than the river sand, and the fine powder of waste glass showed the best performance at 3 % displacement.

Mechanical Performance of Slurry Infiltrated High Performance Fiber Reinforced Cementitious Composite (슬러리 충전 고성능 섬유 보강 시멘트 복합체의 역학적 성능)

  • Kim, Hyun Wook;Lee, Chang Joon
    • Journal of the Korea Institute of Building Construction
    • /
    • v.17 no.2
    • /
    • pp.167-174
    • /
    • 2017
  • This research investigated the mechanical performance of slurry infiltrated high performance fiber reinforced cementitious composite (SI-HPFRCC) with high volume blast furnace slag powder. Hooked-end steel fibers (volume fraction of 6.4%) were used for the fabrication of SI-HPFRCC. A series of mechanical performance test was conducted including strength and toughness of SI-HPFRCC in compressive and flexural mode at four different ages. Compressive and flexural strength tests of the slurry matrix at the same ages were also conducted in order to evaluate fiber reinforcing effect on the mechanical performance. The flexural response of SI-HPFRCC shows an increasing brittleness with age. The compressive response also shows an increasing brittleness with age but the degree of brittleness is much lower than the flexural case. In terms of strength, SI-HPFRCC shows about 140~190% of compressive strength improvement and 440~500% flexural strength improvement comparing to the slurry matrix.

An Effect on the Properties of High Flowing Concrete by Materials Variations-Focused on Inchon LNG Receiving Terminal #213,214 Tanks- (사용재료의 품질변동이 고유동콘크리트의 특성에 미치는 영향-인천 LNG 인수기지 #213,214-TK를 중심으로-)

  • 권영호;김무한
    • Journal of the Korea Concrete Institute
    • /
    • v.12 no.2
    • /
    • pp.99-107
    • /
    • 2000
  • This research investigates experimentally an effect on the properties of the high flowing concrete to be poured in the under-ground slurry wall of Inchon LNG receiving terminal(#213,214-TK) according to variations of concrete materials. Variables for sensitivity test were selected items as followings. 1) Concrete temperature (3cases), 2) Unit water (5cases), 3) Fineness modulus of fine aggregate (5cases), 4) Particle size of lime stone powder (3cases), 5) Replacement ratio of blast-furnace slag (4cases) and 6) Addition ratio of high range water reducing agent (5cases). And fresh conditions of the super flowing concrete should be satisfied with required range including slump flow(65$\pm$5cm), 50cm reaching time of flow(4~10sec), V-lot flowing time(10~ 20sec), U-box height(min. 300mm) and air content(4$\pm$1%). As results for sensitivity test, considered flow-ability, self-compaction and segregation resistance of the high flowing concrete, material variations and conditions of fresh concrete should be satisfied with the range as follwings. 1) Concrete temperature are 10~2$0^{\circ}C$(below 3$0^{\circ}C$), 2) Surface moisture of fine aggregate is within $\pm$ 0.6%, 3) Fineness modulus of fine aggregate is 2.6$\pm$0.2, 4)Replacement ratio of blast-furnace slag is 45~50% and 5) Addition ratio of high range water reducing agent is within 1%. Based on the specification for quality control, we successfully finished concrete pouring on the under-ground slurry wall having 75,000㎥(#213,214-TK) and accumulated real date in site.

Development of Ready-mixed Shotcrete I : Basic Study (레디믹스트 숏크리트 개발 I : 기초 연구)

  • Kim, Dong-Min;Ma, Sang-Joon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.5C
    • /
    • pp.171-185
    • /
    • 2011
  • Ready-mixed shotcrete that mixed with high quality aggregate and can improve construction quality is produced in a dry mortar plant and transported to construction sites. Because of using aggregate that produced in a special plant, Ready-mixed shotcrete has many advantages : good grain-size distribution, minimum stone powder, high quality and standardization material, etc. In this basic study different from the existing study that limited to additive and accelerator, the improvement of aggregate quality was tried to upgrade the shotcrete performance. The investigation about the construction conditions of shotcrete was performed and the result of an opinion poll was analyzed for a good grasp of the problems in domestic shotcrete quality. Pilot Plant Test was also performed to minimize the material segregation in plant manufacturing process. In additions, the field test was performed to find the optimum contents of synthetic fiber, appearing the same flexible toughness with that of steel fiber, and to find the optimum replacement ratio of blast furnace slag.

An Experimental Study On the Properties blended with industrial by products Using Mineral Admixture (산업부산물의 혼입에 따른 콘크리트 특성의 실험적 연구)

  • Kim, Dongbaek;Jun, Kyeongbae
    • Journal of the Society of Disaster Information
    • /
    • v.10 no.2
    • /
    • pp.238-243
    • /
    • 2014
  • Recently environmental pollution is serious and therefore, This study aims at reviewing individual mixing ratio and engineering characteristics of concrete due to mixture and mixing using fine powder and fly ash of blast furnace slag having effect on aspects of environmental preservation and resources recycling and performance increase of the concrete, and verifying possibility of application in the field. Test results are as follows: 1)As mixing quantity of the admixture has increased, performance of the slump has been improved, 2)As mixing quantity of the admixture has increased, there is a trend of delayed ending time, 3)As mixing quantity of admixture has increased, it has showed lower strength at short time age, however, as the age has elapsed and mixing quantity has increased, strength improvement has increased and the admixture has effect on the long term age. In this study, the characteristics and critical value of concrete contained blast furnace slag and fly ash are defined, and will be examined about the field applications.

A Study on the Properties of Cementless Artificial Stone by Recycled Coarse Aggregate and Red Mud According to Replacement Ratio (순환 굵은골재 및 레드머드 치환율에 따른 무시멘트 인조석재의 특성에 관한 연구)

  • Park, Ju-Hwa;Pyeon, Su-Jeong;Lee, Sang-Soo
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.7 no.1
    • /
    • pp.50-56
    • /
    • 2019
  • This study aims to make artificial stone by recycling blast furnace slag powder, red mud and recycled aggregate, which are known as industrial waste. Recycled aggregate is a typical construction waste, and various recycled products such as concrete block are being sold. In this study, we tried to make artificial stone mixed with waste such as recycled aggregate, and experimented with the use of artificial stone and further study. As the red mud replacement ratio increased, the absorption ratio, fluidity and air content of the matrix were measured to be decreased, and the strength and density were found to increase. The fluidity and absorption ratio decreased with increasing the replacement ratio of recycled aggregate, and the air quantity, rate of aggregate on the surface, density and intensity increased to a certain level. Therefore, this study intends to make artificial stone using recycled resources and conducted basic experiments for further study.

Influence of Various Replacing Ratios of SCMs on Properties of High Fluidity Concrete (광물질 혼화재의 치환율 변화가 고유동 콘크리트의 특성에 미치는 영향)

  • Han, In-Deok
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.35 no.12
    • /
    • pp.165-172
    • /
    • 2019
  • The aim of the research is to evaluate the influence of various replacing ratios of supplementary cementitious materials(SCMs) such as fly ash(FA), blast furnace slag(BS), and both FA and BS on general properties including segregation resistance as a powder based high fluidity concrete of normal strength grade with water-to-cement ratio 0.40. Specifically, by replacing the SCMs with low density powders, it was assessed that the decreased segregation resistance due to the decreased viscosity by J-ring test. As a result of the experiment, from the general test, the mixtures with SCMs showed increased segregation resistance by increased viscosity as the references, while some segregation was shown from J-ring test due to the decreased density of fresh state mixture related with the capacity of delivering coarse aggregate.

Quantitative Evaluation of Free CaO in Electric Arc Furnace Reduction Slag using the Ethylene Glycol Method (에틸렌 글리콜법을 이용한 전기로 환원슬래그의 Free CaO 정량 평가에 관한 연구)

  • Kwon, Seung-Jun;Lim, Hee-Seob;Lee, Han-Seung
    • Journal of the Korea Institute of Building Construction
    • /
    • v.18 no.4
    • /
    • pp.321-327
    • /
    • 2018
  • Blast furnace slag has been actively used as a substitute for cement in the construction field with high value-added through resource recycling research. However, most of the slag cannot find a clear recycling purpose. This is because some slags contain unstable materials and are used for road-use asphalt and embankment, which are low value-added materials. Electric arc furnace reduction slag(ERS) has been reported to contain a large amount of unstable free CaO due to deoxidation and component adjustment. In this study, free CaO of ERS which is generated in Korean steelmakers is quantitatively evaluated by using ethylene glycol method. As a result of free CaO quantitative evaluation of ERS, it was confirmed that there is a big difference according to the location of each field. In addition, ERS generally existed in powder form as undifferentiated characteristics, but it was confirmed that free CaO content was different due to hydration product in aggregate form due to water treatment. In addition, free CaO is an amorphous material and its crystallization characteristics are different due to the influence of temperature when it is cooled. ERS requires a long-term aging period as it contains a lot of free CaO.