• Title/Summary/Keyword: blast charge

Search Result 139, Processing Time 0.026 seconds

Effects of blast-induced random ground motions on the stochastic behaviour of industrial masonry chimneys

  • Haciefendioglu, Kemal;Soyluk, Kurtulus
    • Structural Engineering and Mechanics
    • /
    • v.43 no.6
    • /
    • pp.835-845
    • /
    • 2012
  • This paper focuses on the stochastic response analysis of industrial masonry chimneys to surface blast-induced random ground motions by using a three dimensional finite element model. Underground blasts induce ground shocks on nearby structures. Depending on the distance between the explosion centre and the structure, masonry structures will be subjected to ground motions due to the surface explosions. Blast-induced random ground motions can be defined in terms of the power spectral density function and applied to each support point of the 3D finite element model of the industrial masonry system. In this paper, mainly a parametric study is conducted to estimate the effect of the blast-induced ground motions on the stochastic response of a chimney type masonry structure. With this purpose, different values of charge weight and distance from the charge centre are considered for the analyses of the chimney. The results of the study underline the remarkable effect of the surface blast-induced ground motions on the stochastic behaviour of industrial masonry type chimneys.

Determination of Blast Load on the Boreholes Wall Using Decoupled Charge (Decoupling 장전시 천공벽에 작용하는 발파하중의 산정)

  • Kim, Sang-Gyun;Lee, In-Mo;Choi, Jong-Won;Kim, Shin;Lee, Du-Wha
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1999.10a
    • /
    • pp.209-216
    • /
    • 1999
  • In tunneling and road cuts by blasting, it is of the utmost importance that the remaining rock is of high quality in order to avoid rockfall, rockslides and excessive maintenance work. Therefore, numerous blasting techniques which make use of decoupled charge or shock wave superposition effect have been used to control overbrake. In this paper. some approximate method for the determination of blast load according to the charge condition was introduced at first and, instrumented tests were conducted in small scale transparent material to investigate the shape and amplitude of blast load around the bore hole. Compare to the fully coupled charge, low amplitude of blast load around the bore hole was observed in the decoupled charge and explosion gas pressure was important in the shape of blast load. Therefore, quasi-static behaviour of the crack pattern was shown due to low loading rate.

  • PDF

Multi-point response spectrum analysis of a historical bridge to blast ground motion

  • Haciefendioglu, Kemal;Banerjee, Swagata;Soyluk, Kurtulus;Koksal, Olgun
    • Structural Engineering and Mechanics
    • /
    • v.53 no.5
    • /
    • pp.897-919
    • /
    • 2015
  • In this study, the effects of ground shocks due to explosive loads on the dynamic response of historical masonry bridges are investigated by using the multi-point shock response spectrum method. With this purpose, different charge weights and distances from the charge center are considered for the analyses of a masonry bridge and depending on these parameters frequency-varying shock spectra are determined and applied to each support of the two-span masonry bridge. The net blast induced ground motion consists of air-induced and direct-induced ground motions. Acceleration time histories of blast induced ground motions are obtained depending on a deterministic shape function and a stationary process. Shock response spectrums determined from the ground shock time histories are simulated using BlastGM software. The results obtained from uniform and multi-point response spectrum analyses cases show that significant differences take place between the uniform and multi-point blast-induced ground motions.

Analysis of Blast Wave of Explosives by the Scaling Law (축척법에 의한 화약 폭풍과 분석)

  • Park, Jung-Su;Kim, Sung-Ho;Lee, Keun-Deuk;Lee, Jai-Min
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.8 no.4 s.23
    • /
    • pp.120-129
    • /
    • 2005
  • To analyze a blast effect of developed explosives, three different kinds of aluminized tastable explosives and melted cast explosive TNT were used. Conventional explosive TNT was used as a reference. Each tested explosive charge of 340mm diameter spherical type was initiated at the charge center with DXD-65(${\sim}750g$) booster and RP-87 EBW detonator. Thirteen piezo type pressure sensors were located at a range from 4 to 50m away from the charge. From the blast wave profiles, we calculated a peak blast pressure and impulse of the explosion. The calculated pressures and in pulses were converted to TNT Equivalent Weight(TEW) factor by the scaling ]aw method. The average TEW factors based on the blast pressure of TX-01, TX-02, TX-03, TX-04 were 1.298, 1.05, 1.266, 1.274 and the average TEW factors based on impulse were 1.504, 1.686, 1.640, 1.679. From the results, we concluded that TEW factors based on blast pressure and based on impulse of aluminized explosives were superior to TNT. This results are owing to the high contents of aluminum in formulations.

Improvement of Charge Strength Guideline for Multi-Energy Method by Comparing Vapor Cloud Explosion Cases (증기운 폭발 사례 비교를 통한 멀티에너지법의 폭발강도계수 지침 개선)

  • Lee, Seung-Hoon;Kim, Han-Soo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.34 no.6
    • /
    • pp.355-362
    • /
    • 2021
  • Various blast pressure calculation methods have been developed for predicting the explosion pressure of vapor cloud explosions. Empirical methods include the TNT equivalent method, and multi-energy method. The multi-energy method uses a charge strength that considers environmental factors. Although the Kinsella guideline was provided to determine the charge strength, there are limitations such as guidelines related to ignition sources. In this study, we proposed an improved charge strength guideline, by subdividing the ignition source intensity and expanding the type classification through literature analysis. To verify the improved charge strength guideline, and to compare it with the result obtained using the Kinsella guideline, four vapor cloud explosion cases which could be used to estimate the actual blast pressure were investigated. As a result, it was confirmed that the Kinsella guidelines showed an inaccurate, that is, wider pressure than the actual estimated blast pressure. However, the improved charge strength guideline enabled the selection of the intensity of the ignition source, and more subdivided types through the expansion of classification, hence it was possible to calculate the blast pressure relatively close to that of the actual case.

An Efficient Blast Design using Reliability Index (신뢰성지수를 이용한 효율적인 발파설계)

  • 박연수;박선준;강성후
    • Journal of KSNVE
    • /
    • v.8 no.5
    • /
    • pp.821-831
    • /
    • 1998
  • The actual ground vibrations due to NATM and foundation blasting at Seoul(weathered rock), Pusan(weathered rock) and Youngkwang(quartz andesite) have been measured, and the data were analyzed using reliability index($\beta$) to determinate the vibration equations and the maximum charge weight for efficient blast. These were suggested with the division of ultimate limit state($\beta$=0), serviceability limit state($\beta$=1.28) and safety state($\beta$=3), respectively. The reliability index 0 mean 50% data line obtained by the least squares best-fit line. The reliability index 1.28 and 3 represent bounds below 90% and 99.9% of the data, respectively. In this study, reliability index $\beta$=1.28 with security and economy was suggested. The maximum charge weight equations for efficient blast were obtained in W=(Vc/384.90)1.5151.D3(Seoul), W=(Vc/579.82)1.4706.D3(Pusan). W=(Vc/1654.01)1.3456.D3(Youngkwang), and the blast vibration equatiions in V=385(SD)-1.98(Seoul), V=580(SD)-2.04(Pusan), V=1654(SD)-2.23(Youngkwang), respectively. From this study, inference and analysis methods of vibration equations using reliability theory were established.

  • PDF

Numerical Study on Ground Vibration Reduction and Fragmentation in a Controlled Blasting Utilizing Directional U Shape Charge Holder (U형 장약홀더를 이용한 발파공법에서 지반진동 저감특성 및 파괴효율에 관한 수치해석적 연구)

  • Kim, Hyon-Soo;Baek, Beom-Hyun;Oh, Se-Wook;Han, Dong-Hun;Cho, Sang-Ho
    • Explosives and Blasting
    • /
    • v.34 no.1
    • /
    • pp.11-18
    • /
    • 2016
  • It is necessary to minimize ground vibration and noise due to blasting work in urban environment. The blast induced ground vibration and noise are generally generated by a portion of detonation energy, where most of the energy is utilized for rock breakage and movement of rock mass. Recently a blast method utilizing U-shaped steel charge holder was suggested to reduce the ground vibration without decreasing destructive power toward the free surface. In this study, single hole blasting utilizing U-shaped steel charge holder were simulated and the stress waves caused by the detonation of explosives were monitored using AUTODYN software. In order to examine the fragmentation efficiency of the U-shaped steel charge holder, one free face blasting models which adapt the blast induced stress waves were simulated by dynamic fracture process analysis (DFPA) code. In addition, the general blasting models were also simulated to investigate the fragmentation effectiveness of the U-shaped steel charge holder in rock blasting.

On the Determination of Safe Charge Weigth from the Several Predictive Equations of Blast Vibration (발파진동 예측식을 이용한 안전장약량 산정문제에 관하여)

  • 김일중;김영석
    • Tunnel and Underground Space
    • /
    • v.5 no.2
    • /
    • pp.89-94
    • /
    • 1995
  • Regression analysis and a comparative study were carried out for 52 blast vibration data which were monitored by changing the monitoring distance and charge per delay. The results are as follows: 1) The square and cube root scalings and general equation which have a confidence level at the point of 90% and 99% are V90=33300(SD)-2.026 , V90=23600(SD)-1.993, V90=26300W0.755 R-2.007 and V99=48400(SD)-2.026, V99=34000(SD)-1.993 , V99=38100W0.755R-2.007, respectively. 2) There is need to decide the allowable max. charge weight per delay considering the cross points comparatively of the nomogram constructed using several predictived equations. 3) It is necessary to derive the predictive equation on the basis of blast vibration level monitored in field and to decide safe vibration level and the confidence level.

  • PDF

Blast Fragility and Sensitivity Analyses of Steel Moment Frames with Plan Irregularities

  • Kumar, Anil;Matsagar, Vasant
    • International journal of steel structures
    • /
    • v.18 no.5
    • /
    • pp.1684-1698
    • /
    • 2018
  • Fragility functions are determined for braced steel moment frames (SMFs) with plans such as square-, T-, L-, U-, trapezoidal-, and semicircular-shaped, subjected to blast. The frames are designed for gravity and seismic loads, but not necessarily for the blast loads. The blast load is computed for a wide range of scenarios involving different parameters, viz. charge weight, standoff distance, and blast location relative to plan of the structure followed by nonlinear dynamic analysis of the frames. The members failing in rotation lead to partial collapse due to plastic mechanism formation. The probabilities of partial collapse of the SMFs, with and without bracing system, due to the blast loading are computed to plot fragility curves. The charge weight and standoff distance are taken as Gaussian random input variables. The extent of propagation of the uncertainties in the input parameters onto the response quantities and fragility of the SMFs is assessed by computing Sobol sensitivity indices. The probabilistic analysis is conducted using Monte Carlo simulations. The frames have least failure probability for blasts occurring in front of their corners or convex face. Further, the unbraced frames are observed to have higher fragility as compared to counterpart braced frames for far-off detonations.

Experimental analysis of blast loading effects on security check-post

  • Muhammed Rizvan Akram;Ali Yesilyurt
    • Structural Engineering and Mechanics
    • /
    • v.87 no.3
    • /
    • pp.273-282
    • /
    • 2023
  • Concrete construction, one of the oldest building practices, is commonly used in all parts of the world. Concrete is the primary building material for both residential and commercial constructions. The challenge of protecting the buildings, hence nation, against the attack of terrorism has raised the importance to explore the understanding of building materials against the explosion. In this research, a security check-post (reinforced concrete frame filled with plain cement concrete) has been chosen to study the behavior of structural elements under blast loading. Eight nitroglycerines-based dynamite blasts with varying amounts of explosive charge, up to 17 kg weight has been carried out at various scale distances. Pressure and acceleration time history records are measured using blast measuring instruments. Security check post after being exposed by explosive loading are photographed to view cracking/failure patterns on the structural elements. It is noted that with the increase of quantity of explosive, the dimensions of spalling and crack patterns increase on the front panels. Simple empirical analyses are conducted using ConWep and other design manuals such as UFC 3-340-02 (2008) and AASTP-1 (2010) for the purpose of comparison of blast parameters with the experimental records. The results of experimental workings are also compared with earlier researchers to check the compatibility of developed equations. It is believed that the current study presents the simple and preliminary procedure for calculating the air blast and ground shock parameters on the structures exposed to blast explosion.