• Title/Summary/Keyword: black tea

Search Result 192, Processing Time 0.029 seconds

Physiological and Antioxidant Activities of Green, Oolong and Black Tea Extracts (녹차, 오룡차 및 홍차 추출물의 생리활성과 항산화 효과)

  • Kang, Kun-Og
    • Journal of the East Asian Society of Dietary Life
    • /
    • v.21 no.2
    • /
    • pp.243-249
    • /
    • 2011
  • This study investigated the physiological and antioxidant activities of green, oolong, and black tea extracts. The crude catechin extract yields of green, oolong, and black tea were 4.9%, 3.4%, and 2.5%, respectively. Total phenol contents of green, oolong, and black tea were 40.9%, 43.0%, and 38.5%, respectively. The order of the electron donating abilities of green, oolong and black tea were green tea>oolong tea>black tea extracts. The SOD-like activities of green, oolong and black tea extracts at 5,000 ppm were 21.2%, 17.5% and 13.9%, respectively. The nitrite-scavenging abilities of green, oolong and black tea extracts were higher than that of ascorbic acid (p<0.05). Antioxidant activities in soybean oil substrates at 500 ppm were in the order of green tea>oolong tea>black tea${\geq}$BHT (200 ppm). Therefore these results showed that the physiological and antioxidant activities of green tea were better than those of oolong and black tea.

Catechins, Theaflavins and Methylxanthins Contents of Commercial Teas (시판 차류의 Catechins, Theaflavins 및 Methylxanthins 함량에 관한 연구)

  • Kim Soo-Yeun;Kozukue Nobuyuke;Han Jae-Sook;Lee Kap-Rang
    • Korean journal of food and cookery science
    • /
    • v.21 no.3 s.87
    • /
    • pp.346-353
    • /
    • 2005
  • CThis study used HPLC to analyze the contents of 7 kinds of catechins, 4 kinds of theaflavins, and 2 kinds of methylxanthines in the following 6 kinds of commercial Korean tea: 2 green, 2 black, 1 jasmine and loolong. The following ranges in the 13 tea components of the 6 samples by ethanol extract were evaluated in mg/g: (-)-epigallocatechin, 0(black tea and jasmine tea) to 14.19(green tea); (-)-catechin 0; (+)-epicatechin, 0.62(bran rice-green tea) to 2.91(black tea); (-)-epigallocatechin gallate, 4.59(black tea) to 43.96(jasmine tea); (-)-gallocatechin gallate, 0.58(black tea) to 5.80(jasmine tea); (-)-epicatechin gallate, 5.63(bran rice-ueen tea) to 48.06(jasmine tea): (-)-catechin gallate, 0.26(black tea): theaflavif 0 to 3.66(black tea): theaflavin-3-gallate, 0 to 6.94(black tea): theaflavin-3'-gallate, 0 to 4.01(black tea); theaflavin-3,3-digallte, 0 to 10.25(black tea); caffeine, 4.60(bran rice-peen tea) to 26.44(black tea); and theobromine, 0.10(bran rice-green tea) to 1.81(jasmine tea). The contents of all components were lower by water extract than by ethanol extract. Therefore, total catechin (100.55, 45.88 mg/g) and theobromine (1.81, 0.86 mg/g) contents in jasmine tea, and theaflavin content (24.88, 1.36 mg/g) in black tea by ethanol and water extract were the highest. Caffeine content was the highest in black tea(96.48 mg/g) for the ethanol extract, and in jasmine tea (12.38 mg/g) for the water extract.

Glucose-lowering Effect of Powder Formulation of African Black Tea Extract in $KK-A^y/TaJcl$ Diabetic Mouse

  • Shoji, Yoko;Nakashima, Hideki
    • Archives of Pharmacal Research
    • /
    • v.29 no.9
    • /
    • pp.786-794
    • /
    • 2006
  • We observed the suppressive effect of a powder formulation of African black tea extract prepared from the leaves of Camellia sinensis on type 2 non-insulin dependent diabetic mice, $KK-A^y/TaJcl$. Black tea extract significantly showed suppressive effect of the elevation of blood glucose on oral glucose tolerance test of 8 week-old $KK-A^y/TaJcl$ mice (p<0.05). Long-term treatment with black tea extract showed significant suppression of post-prandial blood glucose and obesity (p<0.05). The weight of the intestine of mice treated with black tea extract was significantly reduced (p<0.05). From these results, African black tea used in this study showed a suppressive effect on the elevation of blood glucose during food intake and the body weight.

Flavor of Fermented Black Tea with Tea Fungus (Tea Fungus 발효홍차의 향기)

  • 최경호;최미애;김정옥
    • Journal of Life Science
    • /
    • v.7 no.4
    • /
    • pp.309-315
    • /
    • 1997
  • The fermented black tea with tea fungus (FBTF) was prepared by culturing tea fungus biomass in black tea with 10% sucrose (BT) at 30$\circ$ for 14 days. The flavor quality of FBTF was investigated by sensory and chemical analysis, and the results were compared with BT. The data of sensory analysis indicated that fruity, wine-like, sharp-pungent, and vinegar-like flavor notes were increase, while earthy note was reduced during fermentation. GC-MS analysis of volatile compounds collected from FBTF and BT by Tenax trap showed that linalool, liinalool oxide other flavor compounds known as black tea flavor compounds were disappeared. Some major flavor compounds produced during fermentation were acetic acid, ethanol, limonene, $\alpha$-terpineol, and these volatiles may be attributed to the flavor of characteristic FBTF. Biosynthetic pathway for the formation of limonene and $\alpha$-terpineol are proposed through mevalonic acid pathway using acetic acid as precusor and/or through transformation of linalool and linalool oxide.

  • PDF

Antioxidant and Synergist Effect of Extract Isolated from Commercial Green, Oolong and Black Tea (시판 녹차, 홍차, 오룡차의 항산화 및 상승효과)

  • 이호선;손종연
    • The Korean Journal of Food And Nutrition
    • /
    • v.15 no.4
    • /
    • pp.377-381
    • /
    • 2002
  • The antioxidative effect of tea extracts from green tea, oolong tea and black tea was investigated. The extraction yields of crude catechin were green tea 5.4%, oolong tea 3.5%, and black tea 2.5%. Green tea, oolong tea and black tea of crude catechin showed antioxident activity at concentrations of 200ppm, and the oolong tea showed highest antioxidant effect. The browning intensities(at 420 nm) of green, oolong and black tea were 0.140, 0.582 and 0.915, respectively and green tea showed highest hydrogen donating ability(HDA) and than followed by oolong or black tea. Also, when the crude catechin(100 ppm) was used in combination with ${\alpha}$-tocopherol(50 ppm) and ascorbyl palmitate(50 ppm), the crude cathechin showed very strong synergistic effect, comparable to that of crude catechin(200 ppm).

Characterization of Kombucha Beverages Fermented with Various Teas and Tea Fungus

  • Lee, Sam-Pin;Kim, Chan-Shick
    • Preventive Nutrition and Food Science
    • /
    • v.5 no.3
    • /
    • pp.165-169
    • /
    • 2000
  • Kombucha beverages were made from sweetened tea by Oriental, European and Tibetan tea fungus starters. The hot water extracts o green tea, black tea, Gugija and Omija were mixed with white and/or brown sugar, and were fermented under a static culture at 3$0^{\circ}C$. Titrable acidity, pH, color and cellulose production in kombucha beverages were evaluated. All tea fungus starters showed a higher acid production in green/black tea extracts rather than Gugija and Omija extracts. In green/black tea extracts Oriental tea fungus produced a kombucha beverage with a higher titrable acidity and lower pH than those of European and Tibetan tea fungus starters. By the static fermentation of green/black tea extract for 18 days, Oriental, Tibetan and European tea fungus starters produced cellulose pellicles of 0.43g, 0.16g, and 0.19 g (dry weight) on the top in the culture, respectively. As a mother starter, the cellulose pellicle was more efficient in acid production compared with tea fungus broth. Oriental/Tibetan mixed tea fungus showed the best acid production in the green/black tea extract supplemented with brown sugar.

  • PDF

Fermentation: The Key Step in the Processing of Black Tea

  • Jolvis Pou, K.R.
    • Journal of Biosystems Engineering
    • /
    • v.41 no.2
    • /
    • pp.85-92
    • /
    • 2016
  • Background: The same plant, Camellia sinensis, is used to produce all types of tea, and the differences among the various types arise from the different processing steps that are used. Based on the degree of fermentation, tea can be classified as black, green, white, or oolong tea. Of these, black tea is the most or fully fermented tea. The oxidized polyphenolic compounds such as theaflavins (TF) and thearubigins (TR) formed during fermentation are responsible for the color, taste, flavor, and aroma of black tea. Results: Research indicates that an optimum ratio of TF and TR (1:10) is required to ensure a quality cup of tea. The concentrations of TF and TR as well as desirable quality characteristics increase as fermentation time increases, reaching optimum levels and then degrading if the fermentation time is prolonged. It is also necessary to control the environment for oxidation. There are no established environment conditions that must be maintained during the fermentation of the ruptured tea leaves. However, in most cases, the process is performed at a temperature of $24-29^{\circ}C$ for 2-4 h or 55-110 min for orthodox tea or crush, tear, and curl (CTC) black tea, respectively, under a high relative humidity of 95-98% with an adequate amount of oxygen. Conclusion: The polyphenolic compounds in black tea such as TF and TR as well as un-oxidized catechins are responsible for the health benefits of tea consumption. Tea is rich in natural antioxidant activities and is reported to have great potential for the management of various types of cancers, oral health problems, heart disease and stroke, and diabetes and to have other health benefits such as the ability to detoxify, improve urine and blood flow, stimulate, and improve the immune system.

A Study on Change in Chemical Composition of Green Tea, White Tea, Yellow Tea, Oolong Tea and Black Tea with Different Extraction Conditions (녹차, 백차, 황차, 우롱차 및 홍차의 추출조건에 따른 이화학적 성분 조성 변화 연구)

  • Lee, Young-Sang;Jung, Seul-A;Kim, Jung-Hwan;Cho, Kyoung-Sook;Shin, Eul-Ki;Lee, Hee-Young;Ryu, Hye-Kyung;Ahn, Hyun-Ju;Jung, Won-Il;Hong, Sung-Hak
    • The Korean Journal of Food And Nutrition
    • /
    • v.28 no.5
    • /
    • pp.766-773
    • /
    • 2015
  • This study analyzes the chemical composition of green tea, white tea, yellow tea, oolong tea and black tea with respect to extraction temperature and time. The optimum extraction conditions for these teas were determined by assessing the chemical composition of tea brewed at different temperature (50, 60, 70, $80^{\circ}C$) and extraction times (1, 3, 5, 10 minute). Catechins contents were the largest at 5 minutes and generally declined by 10 minutes. Green tea catechins contents were highest when brewed at $70^{\circ}C$ and besides other teas a change of the trend variation at 70 and $80^{\circ}C$. These temperatures did not extract theaflavins in green tea. Extract temperature and time did not significantly affect theaflavins content of white tea, yellow tea, and oolong tea. Black tea, however, was noticeably dependent on extract conditions, which were most effective at $70^{\circ}C$, brewed for 5 minutes. Caffeine content of green tea, yellow tea, and oolong tea was highest at 5 minutes, but temperature did not appear to affect the content. White tea and black tea caffeine content was highest when brewed at $70^{\circ}C$ for 5 minutes. Theobromine content of green tea, yellow tea, oolong tea, and black tea did not show major differences between the study times or temperature, though the content in white tea increased with higher temperatures when brewed for 5 minutes. The extraction of phenolic compounds increased until 5 minutes, and showed not further increase at 10 minutes. Antioxidant capacity of green tea, white tea, and yellow tea were maximized at $70^{\circ}C$ for 5 minutes or $80^{\circ}C$ for 3 minutes, while oolong and black tea were reached maximum antioxidants at $70^{\circ}C$ for 5 minutes. In general, to optimize the beneficial chemical content of brewed tea, a water temperature of $70^{\circ}C$ for 5 minutes is recommended.

Changes in the Composition of Catechins, Theaflavins and Alkaloids in Leaves from Korean Yabukida Tea Plant During Processing to Fermented Black Tea (한국산 야부끼다종 차엽으로 만든 홍차 제조과정 중의 catechins, theaflavins, alkaloids 함량 변화에 관한 연구)

  • Choi, Suk-Hyun
    • Journal of the Korean Society of Food Culture
    • /
    • v.24 no.3
    • /
    • pp.308-314
    • /
    • 2009
  • In this study, we examined the composition of catechins, theaflavins and alkaloids in leaves during processing to fermented black tea, which is produced by withering, roll breaking, and fermentation of Korean Yabukida tea plant. In addition, we determined the optimal conditions for the production of fermented black tea. The average moisture content in fresh leaves was 70.85%, which dropped to 3.07% in fermented black tea at the last stage of production. When the leaves were analyzed by HPLC, seven types of catechins, four types of theaflavins and three types of alkaloids were identified. The levels of catechins, theaflavins, and alkaloids were then evaluated after being processed into fermented tea. From these experiments, we found that the level of theaflavins, which determines the property of the tea, increased during fermentation. This effect resulted from the change in EGCG, ECG, EGC, EC during the process of fermentation. We also found that the maximal amount of theaflavins was created after 1-2 hours of fermentation. Thus, our results imply that the best condition for producing fermented black tea would be to ferment for 1-2 hours.

Components and Characteristics of Black Tea Colorants (홍차색소의 성분과 특성)

  • 서명희;신윤숙
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.22 no.4
    • /
    • pp.477-481
    • /
    • 1998
  • Colored components in black tea were extracted, freeze-dried, and analysed to investigate the possibility using as a natural dye. Fractionation of the colored components was carried out by gel permeation chromatography. The colored components in black tea were elected into seven fractions. Each fraction was analyzed by UV spectrophotometer. The early fluted fractions 1-4 did not show any absorption peaks in 320-700 nm and showed the increase in absorption as it approaches to short wavelength and are considered as highly polymerized colored substances. Fractions 5-6 showed tar at 350 m and are considered as thearubigins. Fraction 7 showed absorption peaks at 376 nm and 456 nm and is considered as theaflavin. IR spectra of each fraction show: Strong C=0 stretching band at 1650 cm-1 appears in fractions 1-4, but not in fractions 5-7. Strong C=0 stretching band at 1700 cm-L appears in fraction 3-7. C=0 stretching band at 1610 cm-1 appears as a shoulder in fraction 4 and progressively changes into strong peak in fraction 5-7. From these results, it is assumed that colored components in black tea consist of polyphenolic substances having different molecular weight which were formed during tea manufacturing process. The colorants from black tea infusion were applied to silk, wool, cotton and nylon fabrics. Black tea colorants showed high affinity to wool, silk and nylon, but very low affinity to cotton fabrics.

  • PDF