Glucose-lowering Effect of Powder Formulation of African Black Tea Extract in $KK-A^y/TaJcl$ Diabetic Mouse

  • Shoji, Yoko (Department of Microbiology, St. Marianna University School of Medicine) ;
  • Nakashima, Hideki (Department of Microbiology, St. Marianna University School of Medicine)
  • Published : 2006.09.01

Abstract

We observed the suppressive effect of a powder formulation of African black tea extract prepared from the leaves of Camellia sinensis on type 2 non-insulin dependent diabetic mice, $KK-A^y/TaJcl$. Black tea extract significantly showed suppressive effect of the elevation of blood glucose on oral glucose tolerance test of 8 week-old $KK-A^y/TaJcl$ mice (p<0.05). Long-term treatment with black tea extract showed significant suppression of post-prandial blood glucose and obesity (p<0.05). The weight of the intestine of mice treated with black tea extract was significantly reduced (p<0.05). From these results, African black tea used in this study showed a suppressive effect on the elevation of blood glucose during food intake and the body weight.

Keywords

References

  1. Anderson, R. A. and Polansky, M. M., Tea enhances insulin activity. J. Agric. Food Chem., 50, 7182-7186 (2002) https://doi.org/10.1021/jf020514c
  2. Arakawa, H., Maeda, M., Okuno, S., and Shimamura, T., Role of hydrogen peroxide in bactericidal action of catechin., Biol. Pharm. Bull., 27(3), 277-281 (2004) https://doi.org/10.1248/bpb.27.277
  3. Bloomgarden, Z. T., Troglitazone: current therapeutic role in type 2 diabetes mellitus. Endocr. Pract., 4, 213-218 (1998) https://doi.org/10.4158/EP.4.4.213
  4. Broadhurst, C. L., Polansky, M. M., and Anderson, R. A., Insulin-like biological activity of culinary and medicinal plant aqueous extracts in vitro. J. Agric. Food Chem., 48, 849-852 (2000) https://doi.org/10.1021/jf9904517
  5. Chakravarthy, B. K., Gupta, S., and Gode, K. D., Antidiabetic effect of (-)-epicatechin. Lancet, 2, 272-273 (1982)
  6. Crespy, V. and Williamson G., A review of the health effects of green catechins in in vivo animal models. J. Nutr., 134, 3431S-3440S (2004) https://doi.org/10.1093/jn/134.12.3431S
  7. Gomes, A, Vedasiromoni, J. R., Das, M., Sharma, R. M., and Ganguly, D. K., Anti-hyperglycemic effect of black tea (Camellia sinensis) in rat. J. Ethnopharmacol., 45, 223-226 (1995) https://doi.org/10.1016/0378-8741(95)01223-Z
  8. Halle, M., Berg, A., Northoff, H., and Keul, J., Importance of TNF-alpha and leptin in obesity and insulin resistance: a hypothesis on the impact of physical exercise. Exerc. Immunol. Rev., 4, 77-94 (1998)
  9. Hermann L. S., Optimising therapy for insulin-treated type 2 diabetes mellitus. Drugs Aging, 17, 283-294 (2000) https://doi.org/10.2165/00002512-200017040-00004
  10. Hii, C. S. and Howell, S. L., Effects of epicatechin on rat islets of Langerhans. Diabetes, 33, 291-296 (1984) https://doi.org/10.2337/diabetes.33.3.291
  11. Honda, M. and Hara, Y., Inhibition of rat small intestinal sucrase and ${\alpha}$-glucosidase activities by tea polyphenols. Biosci. Biotech. Biochem., 57, 123-124 (1993) https://doi.org/10.1271/bbb.57.123
  12. Hosoda, K., Wang, M. F., Liao, M. L., Chuang, C. K., Iha, M., Clevidence, B., and Yamamoto, S., Antihyperglycemic effect of oolong tea in type 2 diabetes. Diabetes Care, 26, 1714- 1718 (2003) https://doi.org/10.2337/diacare.26.6.1714
  13. Kadowaki, T., Insights into insulin resistance and type 2 diabetes from knockout mouse models. J. Clin. Invest., 106, 459-465 (2000) https://doi.org/10.1172/JCI10830
  14. Kao, Y-H., Hiipakka R. A., and Liao, S., Modulation of endocrine systems and food intake by green tea epigallocatechin gallate. Endocrinology, 141, 980-987 (2000) https://doi.org/10.1210/en.141.3.980
  15. Kolb, H., Kiesel, U., Greulich, B., and van der Bosch, J., Lack of antidiabetic effect of (-)-epicatechin. Food Chem. Toxicol., 42, 975-981 (2004) https://doi.org/10.1016/j.fct.2004.02.010
  16. Kuroda, Y. and Hara, Y., Antimutagenic and anticarcinogenic activity of tea polyphenols. Mutat. Res., 436, 69-97 (1999) https://doi.org/10.1016/S1383-5742(98)00019-2
  17. Lazar, M. A., PPARgamma, 10 years later. Biochimie., 87, 9-13 (2005) https://doi.org/10.1016/j.biochi.2004.10.021
  18. Lehmann, J. M., Moore, L. B., Smith-Oliver, T. A., Willkison, W. O., Willson, T. M., and Kliewer, S. A., An antidiabetic thiazolidinedione is a high affinity ligand for peroxisome proliferators-activated receptor gamma (PPAR gamma). J. Biol. Chem., 270, 12953-12956 (1995) https://doi.org/10.1074/jbc.270.22.12953
  19. Leung, L. K., Su, Y., Chen, R., Zhang, Z., Huang, Y., and Chen, Z. Y., Theaflavins in black tea and catechins in green tea are equally effective antioxidants. J. Nutri., 131, 2248-2251 (2001) https://doi.org/10.1093/jn/131.9.2248
  20. Lohray, B. B. and Bhushan, V., Advances in insulin sensitizers. Curr. Med. Chem., 11, 2467-2503 (2004) https://doi.org/10.2174/0929867043364513
  21. Matsui, T., Yoshimoto, C., Osajima, K., Oki, T., and Osajima, Y., In vitro survey of alpha-glucosidase inhibitory food components. Biosci. Biotechnol. Biochem., 60, 2019-2022 (1996) https://doi.org/10.1271/bbb.60.2019
  22. Nakayama, M., Suzuki, K., Toda M., Okubo S., Hara Y., and Shimamura, T., Inhibition of the infectivity of influenza virus by tea polyphenols. Antiviral. Res., 21(4), 289-299 (1993) https://doi.org/10.1016/0166-3542(93)90008-7
  23. Okuno, A., Tamemoto, H., Tobe, K., Ueki, K., Mori, Y., Iwamoto, K., Umesono, K., Akanuma, Y., Fujiwara, T., Horikoshi, H., and Yazaki, Y., Troglitazone increases the number of small adipocytes without the change of white adipose tissue mass in obese Zucker rats. J. Clin. Invest., 101, 1354-1361 (1998) https://doi.org/10.1172/JCI1235
  24. Peraldi, P., Xu, M., and Spiegelman, B. M., Thiazolidinediones block tumor necrosis factor-alpha-induced inhibition of insulin signaling. J. Clin. Invest., 100, 1863-1869 (1997) https://doi.org/10.1172/JCI119715
  25. Rosak, C., The pathophysiologic basis of efficacy and clinical experience with the new oral antidiabetic agents. J. Diabetes Complicati., 16, 123-132 (2002) https://doi.org/10.1016/S1056-8727(01)00207-0
  26. Ruan, H. and Lodish, H. F., Insulin resistance in adipose tissue: direct and indirect effects of tumor necrosis factor-alpha. Cytokine Growth Factor Rev., 14, 447-455 (2003) https://doi.org/10.1016/S1359-6101(03)00052-2
  27. Ruan, H., Pownall, H. J., and Lodish, H. F., Troglitazone antagonizes tumor necrosis factor-alpha-induced reprogramming of adipocyte gene expression by inhibiting the transcriptional regulatory functions of NF-kappaB. J. BIol. Chem., 278, 28181-28192 (2003) https://doi.org/10.1074/jbc.M303141200
  28. Ryan, E. A., Imes, S., Wallace, C., and Jones, S., Herbal tea in the treatment of diabetes mellitus. Clin. Invest. Med., 23, 311- 317 (2000)
  29. Shimizu, M., Kobayashi, Y., Suzuki, M., Satsu, H., and Miyamoto, Y., Regulation of intestinal glucose transport by tea catechins. Biofactor, 13, 61-65 (2000) https://doi.org/10.1002/biof.5520130111
  30. Shirai, N. and Suzuki, H., Effects of western, vegetarian, and Japanese dietary fat model diets with or without green tea extract on the plasma lipids and glucose, and liver lipids in mice. A long-term feeding experiment. Annal. Nutri. Metab., 48, 95-102 (2004) https://doi.org/10.1159/000077044
  31. Suto, J., Matsuura, S., Imamura, K., Yamanaka, H., and Sekikawa, K., Genetic analysis of non-insulin-dependent diabetes mellitus and KK-Ay mice. Eur. J. Endocrinol., 139, 654-661 (1998) https://doi.org/10.1530/eje.0.1390654
  32. Takamura, T., Nohara, E., Nagai, Y., and Kobayashi, K., Stagespecific effect of a thiazolidinediones on proliferation, differentiation and PPARgamma mRNA expression in 3T3- L1 adipocytes. Eur. J. Pharmacol., 422, 23-29 (2001) https://doi.org/10.1016/S0014-2999(01)01053-6
  33. Taylor, S. I., Deconstructing type 2 diabetes. Cell, 97, 9-12 (1999) https://doi.org/10.1016/S0092-8674(00)80709-6
  34. Tolman, K. G., Fonseca, V., Tan, M. H., and Dalpiaz, A., Narrative review: hepatobiliary disease in type 2 diabetes mellitus. Ann. Intern. Med., 141, 946-956 (2004) https://doi.org/10.1001/archinte.141.7.946
  35. Tsuneki, H., Ishizuka, M., Terasawa, M., Wu, J. B., Sasaoka, T., and Kimura, I., Effect of green tea on blood glucose levels and serum proteomic patterns in diabetic (db/db) mice and on glucose metabolism in healthy humans. BMC Pharmacol., 4, 18 (2004) https://doi.org/10.1186/1471-2210-4-18
  36. Tzameli, I., Fang, H., Ollero, M., Shi, H., Hamm, J. K., Kievit, P., Hollenberg, A. N., and Flier, J. S., Regulated production of a peroxisome proliferators-activated receptor-gamma ligand during an early phase of adipocyte differentiation in 3T3-L1 adipocytes. J. Biol. Chem., 279, 36093-36102 (2004) https://doi.org/10.1074/jbc.M405346200
  37. Waltner-Law, M. E., Wang, X. L., Law, B. K., Hall, R. K., and Nawano, M., Epigallocatechin gallate, a constituent of green tea, represses hepatic glucose production. J. Biol. Chem., 277, 34933-34940 (2002) https://doi.org/10.1074/jbc.M204672200
  38. Winkler, G., Kiss, S., Keszthelyi, L., Sapi, Z., Ory, I., Salamon, F., Kovacs, M., Vargha, P., Szekeres, O., Speer, G., Karadi, I., Sikter, M., Kaszas, E., Dworak, O., Gero, G., and Cseh, K., Expression of tumor necrosis factor (TNF)-alpha protein in the subcutaneous and visceral adipose tissue in correlation with adipocyte cell volume, serum TNF-alpha, soluble serum TNF-receptor-2 concentrations and C-peptide level. Eur. J. Endocrinol., 149, 129-135 (2003) https://doi.org/10.1530/eje.0.1490129
  39. Wu, L. Y., Juan, C. C., Ho, L. T., Hsu, Y. P., and Hwang, L. S., Effect of green tea supplementation on insulin sensitivity in Sprague-Dawley rats. J. Agric. Food Chem., 52, 643-648 (2004) https://doi.org/10.1021/jf030365d
  40. Yale, J. F., Valiquett, T. R., Ghazzi, M. N., Owens-Grillo, J. K., Whitcomb, R. W., and Foyt, H. L., The effect of thiazolidinedione drug, troglitazone, on glycemia in patient with type 2 diabetes mellitus poorly controlled with sulfonylurea and metformin. A multicenter, randomized, doubleblind, placebocontrolled trial. Ann. Intern. Med., 134, 737-745 (2001) https://doi.org/10.7326/0003-4819-134-9_Part_1-200105010-00010
  41. Yamauchi, T., Kamon, J., Waki, H., Murakami, K., Motojima, K., Komeda, K., Ide, T., Kubota, N., Terauchi, Y., Tobe, K., Miki, H., Tsuchida, A., Akanuma, Y., Nagai, R., Kimura, S., and Kadowaki, T., The mechanisms by which both heterozygous peroxisome proliferators-activated receptor gamma (PPAR gamma) deficiency and PPAR gamma agonist improve insulin resistance. J. Biol. Chem., 276, 41245-41254 (2001) https://doi.org/10.1074/jbc.M103241200