• Title/Summary/Keyword: black rot

Search Result 152, Processing Time 0.025 seconds

First Report of Pectobacterium brasiliense Causing Soft Rot on Graft Cactus in Korea

  • Park, Kyoung-Taek;Hong, Soo-Min;Back, Chang-Gi;Kim, San Yeong;Lee, Seung-Yeol;Kang, In-Kyu;Ten, Leonid N.;Jung, Hee-Young
    • Research in Plant Disease
    • /
    • v.28 no.3
    • /
    • pp.172-178
    • /
    • 2022
  • The graft cactus (Gymnocalycium mihanovichii) continues to be exported to more than 20 countries worldwide. In April 2021, typical bacterial symptoms of soft rot were observed in the graft cactus (cv. Yeonbit) in Goyang, Gyeonggi-do, Korea, resulting in economic losses in cactus production. The stems turned dark brown and the flowers were covered with black rot. The bacterial strain designated as KNUB-01-21 was isolated from infected stems and flowers. The results of the morphological and biochemical tests of the isolate were similar to those of Pectobacterium brasiliense. For molecular analysis, the 16S rRNA region and three housekeeping genes (dnaX, leuS, and recA) of the strain KNUB-01-21 were amplified. Based on the results of the molecular analysis and morphological and biochemical tests, KNUB-01-21 was identified as P. brasiliense. The pathogenicity of KNUB-01-21 on graft cactus was confirmed by an inoculation test. Artificial inoculation using P. brasiliense KNUB-01-21 produced soft rot symptoms on the grafted cactus, and the same bacterium was re-isolated and re-identified. This is the first report of P. brasiliense causing soft rot in graft cactus in Korea.

Root Rot of Bottle Gourd Stock of Watermelon Caused by Monosporascus cannonballus in Korea (수박 대목용 참박에 발생한 Monosporascus cannonballus에 의한 검은점뿌리썩음병(黑点根腐病))

  • 박경석;남상현;김충회
    • Korean Journal Plant Pathology
    • /
    • v.10 no.3
    • /
    • pp.175-180
    • /
    • 1994
  • The fungal pathogen Monosporascus annonballus was first isolated in Korea from the rotted roots of bottle gourd stocks of collapsed watermelon plants in fields near Chochiwon, Choongnam province in July, 1993. Perithecia of M. cannonballus were dark brown to black, globose, 220~570 ${\mu}{\textrm}{m}$ in diam. and had many asci. Asci are hyaline, clavate to pyriform, and 50~120$\times$35~570 ${\mu}{\textrm}{m}$ in size. Ascospores were aseptate, dark brown to black, globose, 25~45$\times$30~50 ${\mu}{\textrm}{m}$ in diam, and borne singly in each ascus. The fungus grew in the temperature range of 4 to 34$^{\circ}C$, best at 3$0^{\circ}C$. The optimum pH for growth was 6.8. Mycelial growth rate of M. cannonballus was 25.5mm/day on PDA at 26$^{\circ}C$. Perithecia began to form after 20-day-growth on PDA and produced mature asci after 30 days or later. In the greenhouse inoculation tests, the fungus developed water-soaked lesions on roots of bottle gourd seedlings and was then reisolated from the lesions. Severed damages on watermelon plants by M. cannonballus are greatly concerned in Korea, since no stocks used for watermelon cultivation have reported to be resistant to the fungus.

  • PDF

The Outbreak and Propagule formation of black root rot caused by Calonectria crotalariae in Korea (콩 흑색뿌리썩음병의 발생과 Propagule의 형성)

  • Sung J.M.;Park J.H.;Lee S.C.;Chung B.K.
    • Korean journal of applied entomology
    • /
    • v.19 no.4 s.45
    • /
    • pp.228-233
    • /
    • 1980
  • The infection rate of soybean black root rot disease caused by Calonectria crotalariae was about $14\%$. The isolated fungi from the infected soybean roots and stems were Calonectria crotalariae, Fusarium solani, F. roseum, Phomopsis sojae, Pythium aphanidermatum, Rhizoctonia solani and Macrophomina sp. Among them, C. crotalariae was the most virulent pathogen under the laboratory conditions. Mycelial growth and microsclerotial formation were good on PSA containing 1000cc of water, 100g of potato and 20g of sugar. Mycelial growth, sporulation and microsclerotial formation were good on sterilized root. Perithecial formation was better in the dark condition than in the light. Survival of macroconidia was not available between $0\~25\%$ soil water content. Microsclerotia and mycelium in infected plant debris were survived for 4 months at to $8\%\;50\%$ soil water content. The plant height, when inoculated with $1.2\%$ inoculum density, reached approximately half of uninoculated plants. Disease severity was much higher at nonsterilized soil than completely sterilized soil. It was determined that the host range of this pathogen includes soybean, peanut, green bean and red bean.

  • PDF

Potential Biological Control of Orobanche by Fungi Isolated from Diseased Specimens in Jordan

  • K. M. Hameed;I. M. Saadoun;Shyab, Zaineb-Al
    • The Plant Pathology Journal
    • /
    • v.17 no.5
    • /
    • pp.257-263
    • /
    • 2001
  • Species of the genus Orobanche are parasitic flowering plants, holoparasites, which cling to the roots of green plants. Their tiny seeds (200 x $250\mu\textrm{m}$) germinate in response to chemical stimuli produced by host and some non-host plants. Successful contact with their host leads to development of haustoria for obtaining water and food. The shoots above the ground expose flowers and disseminate seeds. Several samples of Orobanche ramosa, O. crenata, O. cernua, and O. egyptiaca were collected from different localities in Jordan. These samples showed one of the following disease symptoms: dry rot at the base of the stem; general deterioration and expanded lesion from base upward; soft tissue maceration of stem; and black rot of flower parts with incomplete maturation of the ovary and seeds. Isolation from diseased stems and seeds was made on three different mycological media. Several fungi were isolated, mainly, Fusarium spp., Alternaria alternata, Rhizoctonia sp., Dendrophora sp., Chaetomium sp., and an ascomycetus fungus with a perithecium. Pathogenicity tests showed that Fusarium spp. and Alternaria alternata attacked healthy living tissue of Orobanche spikes. These fungi caused lesions of black soft rot and complete deterioration within 5-7 days. They also attacked Orobanche seeds, arresting their germination and causing maceration of non-germinated and germinated seeds after 5-7 days of incubation. Meanwhile, Dendrophora sp. and Chaetomium sp. caused limited lesion at first, but were able to colonize the tissue as it aged and senesced. This study showed the presence of a potential endogenous pathogenic fungi in Jordan, which can be investigated as a biological control for Orobanche.

  • PDF

Growth response of Calla (Zantedeschia) to root zone environmental conditions in Highland (고랭지에서의 근권환경에 따른 유색칼라(Zantedeschia)의 생육반응)

  • Nam, Chun-Woo;Yoo, Dong-Lim;Kim, Su-Jeong;Suh, Jong-Teak;Paek, Kee-Yoeup;Lee, Sang Gyu;Yoon, Moo Kyung
    • Korean Journal of Agricultural Science
    • /
    • v.40 no.4
    • /
    • pp.325-331
    • /
    • 2013
  • This experiment has been carried out to determine optimal culture conditions for the production of cut flowers and tubers of Calla (Zantedeschia 'Golden Affair' and 'Black Magic') in highlands. Treatments consisted of various levels of root zone environments, Results are as follows: Calla 'Golden Affair' were grown with different mulching materials such as Non-mulching, Black film, reflective film, Rice hull. Mulching materials resulted in no difference in the number of cut flowers but flower length was highest in reflective film. Calla 'Black Magic' were treated with various soil water content, soil type and watering time. Number of cut flowers and flower quality were greatest when the plants were watered at -80 kPa soil water content. No symptoms of soft rot (Erwinia carotovora) was observed at this soil water content. The occurrence of soft rot was observed with similar percentage according to soil type and the soil water content. When Calla 'Black Magic' were watered at the time of soil surface drying, growth was greater compared to others. Air temperature and PPF affected plant growth and photosynthesis. Photosynthetic rate was greatest at $25^{\circ}C$ and PPF $200{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$, while lowest at $28^{\circ}C$ and PPF $800{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$. Soft rot did not occur without regard to dipping treatment (0, 5, 10, 24, 48 hours) when the day and night temperature were maintained at $25^{\circ}C$ and $20^{\circ}C$, respectively.

Soybean Sprout Rot Caused by Colletotrichum species (Colletotrichum species에 의한 콩나물 부패)

  • Kim, Yong-Ki;Ryu, Jae-Ki;Ryu, Jae-Dang;Lee, Sang-Yeop;Lee, Seong-Don
    • Research in Plant Disease
    • /
    • v.8 no.3
    • /
    • pp.175-178
    • /
    • 2002
  • Two novel casual agents of soybean sprout rot occurred at soybean sprouts cultivated under structure in Suwon area in 1997 were isolated and their pathogenicity was tested in vivo. An isolate formed crowed, black acervuli which were oval to elongated with numerous black, needlelike, intermixed long and short setae, 65~110$\times$3.5~6.6 ${\mu}{\textrm}{m}$. Conidia were curved, lunate, unicellular and hyliane and measured 21.5~22.5$\times$3.5~4.0 ${\mu}{\textrm}{m}$. The other isolate produced conidia with straight and cylindrical, and measured 14.0~17.5$\times$3.5~4.5 ${\mu}{\textrm}{m}$. Apressorium size was measured 6.3~8.5$\times$4.5~5.0 ${\mu}{\textrm}{m}$. The agents were identified as Colletotrichum truncatum and C. gloeosporioides based on their morphological characteristics. There was a large difference in pathogenicity between two isolates. C. gloeosporioides caused dark brownish discoloration of whole plants. It showed high pathogenicity with severe disease development. Meanwhile C. gloeosporiodes caused light brown spots on cotyledon and its pathogenicity was not strong. The soybean sprout rot occurred by the two Colletotrichum species was firstly reported in soy-bean sprout in Korea, and we suggest it as “Colletotrichum rot of soybean sprout”.

Sclerotinia Rot of Astragalus sinicus Caused by Sclerotinia trifoliorum (Sclerotinia trifoliorum에 의한 자운영 균핵병)

  • Kwon, Jin-Hyeuk;Lee, Heung-Su;Lee, Yong-Hwan;Shim, Hong-Sik
    • Research in Plant Disease
    • /
    • v.16 no.1
    • /
    • pp.90-93
    • /
    • 2010
  • Sclerotinia rot occurred sporadically on the stems and leaves of Astragalus sinicus in the farmers fields at Goseong-gun, Gyeongnam province in Korea. The infected plants showed the typical symptoms: watersoaked, wilt, rot, blight and eventual death. The colony of the isolated fungus on potato-dextrose agar (PDA) was white to faintly gray color. Sclerotia formed on the PDA were globose in shape, black in color and $2{\sim}14{\times}2{\sim}7mm$ in size. The optimum temperature for mycelial growth and sclerotium formation was at $20^{\circ}C$ on PDA. Apothecia formed on PDA were globose~disk in shape and 3~8 mm in size. Asci were cylindrical in shape and $145{\sim}210{\times}10{\sim}12{\mu}m$ in size. Ascospores were ellipsoid and $10{\sim}14{\times}6{\sim}7{\mu}m$ in size. On the basis of mycological characteristics and pathogenicity test on host plants, the fungus was identified as Sclerotinia trifoliorum Eriksson. This is the first report on sclerotinia rot of A. sinicus caused by Strifoliorum Eriksson in Korea.

Integrated Management of Foot Rot of Lentil Using Biocontrol Agents under Field Condition

  • Hannan, M.A.;Hasan, M.M.;Hossain, I.;Rahman, S.M.E.;Ismail, Alhazmi Mohammed;Oh, Deog-Hwan
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.7
    • /
    • pp.883-888
    • /
    • 2012
  • The efficacy of cowdung, Bangladesh Institute of Nuclear Agriculture (BINA)-biofertilizer, and Bangladesh Agricultural University (BAU)-biofungicide, alone or in combination, was evaluated for controlling foot rot disease of lentil. The results exhibited that BINA-biofertilizer and BAU-biofungicide (peat soil-based Rhizobium leguminosarum and black gram bran-based Trichoderma harzianum) are compatible and have combined effects in controlling the pathogenic fungi Fusarium oxysporum and Sclerotium rolfsii, which cause the root rot of lentil. Cowdung mixing with soil (at 5 t/ha) during final land preparation and seed coating with BINA-biofertilizer and BAU-biofungicide (at 2.5% of seed weight) before sowing recorded 81.50% field emergence of lentil, which showed up to 19.85% higher field emergence over the control. Post-emergence deaths of plants due to foot rot disease were significantly reduced after combined seed treatment with BINA-biofertilizer and BAU-biofungicide. Among the treatments used, only BAU-biofungicide as the seed treating agent resulted in higher plant stand (84.82%). Use of BINA-biofertilizer and BAU-biofungicide as seed treating biocontrol agents and application of cowdung in the soil as an organic source of nutrient resulted in higher shoot and root lengths, and dry shoot and root weights of lentil. BINA-biofertilizer significantly increased the number of nodules per plant and nodules weight of lentil. Seeds treating with BAU-biofungicide and BINA-biofertilizer and soil amendment with cowdung increased the biomass production of lentil up to 75.56% over the control.

Occurrence of Sclerotinia Rot by Sclerotinia minor on Aster yomena in Korea (한국에서 Sclerotinia minor에 의한 쑥부쟁이 균핵병 발생)

  • Lee, Sang Yeob;Choi, Hyo-Won;Weon, Hang Yeon;Han, Ji Hee;Kim, Dayeon;Ahn, Sungho
    • The Korean Journal of Mycology
    • /
    • v.46 no.2
    • /
    • pp.200-204
    • /
    • 2018
  • Sclerotinia rot symptoms were frequently found on the stems of Aster yomena in the Gurye region of Korea in April 2016. The symptom, watery soft rot, mainly appeared on the stems, and severely infected plants blighted. White mycelia spread over the stems of the infected plants and the soil surface. Small black sclerotia formed on the plant lesions and inside the diseased stems. Incidence of the disease was as high as 20~80% in the A. yomena fields. Based on the morphological and molecular characteristics of the isolates, the fungi were identified as Sclerotinia minor. This is the first report of Sclerotinia rot caused by Sclerotinia minor on A. yomena in Korea.

Molecular Approaches to Evaluate the Role of Some Genes Required for Plant Pathogenicity of Xanthomonas campestris pv. campestris (Xanthomonas campestris pv. campestris의 병원성 관련 형질 탐색에 관한 연구)

  • Bae, Dong-Won;Yun, Han-Dae;Kim, Hee-Kyu
    • Korean Journal Plant Pathology
    • /
    • v.13 no.3
    • /
    • pp.172-178
    • /
    • 1997
  • Xanthmonas campestris pv. campestris, causal agent of Black rot of crucifers, were isolated and identified from crucifer host. In order to determine the characters of X. c. pv. campestris associated with pathogenicity, Tn5 mutagenesis was carried out by conjugating with E. coli pJB4J1. Transconjugants were plate- assayed for missing cellulase, protease and amylase activity. A cellulase negative mutant was selected and tested for pathogenicity. Light microscopy and Scanning electron microscopy revealed that substomatal tissues were colonized by mutant, but was far less extensive than those by wild type. Stomatal surface and substomatal tissue appeared to have degraded by only wild type in 24 hrs and progression of pathogenesis was distinct in 48 hrs. In 6 days, wild type proliferated well in the tissue facilitated by cellulase activity. As a result, cellulase was determined as the important factor in pathogenesis.

  • PDF