DOI QR코드

DOI QR Code

First Report of Pectobacterium brasiliense Causing Soft Rot on Graft Cactus in Korea

  • Park, Kyoung-Taek (School of Applied Biosciences, Kyungpook National University) ;
  • Hong, Soo-Min (School of Applied Biosciences, Kyungpook National University) ;
  • Back, Chang-Gi (Horticultural and Herbal Crop Environment Division, National Institute of Horticultural and Herbal Science, Rural Development Administration) ;
  • Kim, San Yeong (Gumi Floriculture Research Institute, Gyeongsangbuk-do Agricultural Research and Extension Services) ;
  • Lee, Seung-Yeol (School of Applied Biosciences, Kyungpook National University) ;
  • Kang, In-Kyu (Department of Horticultural Science, Kyungpook National University) ;
  • Ten, Leonid N. (School of Applied Biosciences, Kyungpook National University) ;
  • Jung, Hee-Young (School of Applied Biosciences, Kyungpook National University)
  • Received : 2022.07.21
  • Accepted : 2022.09.06
  • Published : 2022.09.30

Abstract

The graft cactus (Gymnocalycium mihanovichii) continues to be exported to more than 20 countries worldwide. In April 2021, typical bacterial symptoms of soft rot were observed in the graft cactus (cv. Yeonbit) in Goyang, Gyeonggi-do, Korea, resulting in economic losses in cactus production. The stems turned dark brown and the flowers were covered with black rot. The bacterial strain designated as KNUB-01-21 was isolated from infected stems and flowers. The results of the morphological and biochemical tests of the isolate were similar to those of Pectobacterium brasiliense. For molecular analysis, the 16S rRNA region and three housekeeping genes (dnaX, leuS, and recA) of the strain KNUB-01-21 were amplified. Based on the results of the molecular analysis and morphological and biochemical tests, KNUB-01-21 was identified as P. brasiliense. The pathogenicity of KNUB-01-21 on graft cactus was confirmed by an inoculation test. Artificial inoculation using P. brasiliense KNUB-01-21 produced soft rot symptoms on the grafted cactus, and the same bacterium was re-isolated and re-identified. This is the first report of P. brasiliense causing soft rot in graft cactus in Korea.

Keywords

Acknowledgement

This work was supported by the Korea Institute of Planning and Evaluation for Technology in Food, Agriculture and Forestry (IPET) through the Agriculture, Food and Rural Affairs Convergence Technologies Program for Educating Creative Global Leader Program funded by the Ministry of Agriculture, Food and Rural Affairs (MAFRA) (no. 321001-03).

References

  1. Alcorn, S. M., Orum, T. V., Steigerwalt, A. G., Foster, J. L. M., Fogleman, J. C. and Brenner, D. J. 1991. Taxonomy and pathogenicity of Erwinia cacticida sp. nov. Int. J. Syst. Evol. Microbiol. 41: 197-212.
  2. Chang, M., Hyun, I.-H. and Lee, Y.-H. 1998. Bipolaris stem rot of cactus caused by Bipolaris cactivora (Petrak) Alcorn. Korean J. Plant Pathol. 14: 661-663.
  3. Charkowski, A. O. 2018. The changing face of bacterial soft-rot diseases. Annu. Rev. Phytopathol. 56: 269-288. https://doi.org/10.1146/annurev-phyto-080417-045906
  4. Choi, O. and Kim, J. 2012. Pectobacterium carotovorum subsp. brasiliense causing soft rot on paprika in Korea. J. Phytopathol. 161: 125-127. https://doi.org/10.1111/jph.12022
  5. Czajkowski, R., Perombelon, M. C. M., Jafra, S., Lojkowska, E., Potrykus, M., van der Wolf, J. M. et al. 2015. Detection, identification and differentiation of Pectobacterium and Dickeya species causing potato blackleg and tuber soft rot: a review. Ann. Appl. Biol. 166: 18-38. https://doi.org/10.1111/aab.12166
  6. Felsenstein, J. 1981. Evolutionary trees from DNA sequences: a maximum likelihood approach. J. Mol. Evol. 17: 368-376. https://doi.org/10.1007/BF01734359
  7. Hyun, I. H., Lee, S. D., Lee, Y. H. and Heo, N. Y. 1998. Mycological characteristics and pathogenicity of Fusarium oxysporum Schlecht. emend. Snyd. & Hans. causing stem rot of cactus. Korean J. Plant Pathol. 14: 463-466.
  8. Jee, S., Choi, J.-G., Hong, S., Lee, Y.-G. and Kwon, M. 2018. First report of soft rot by Pectobacterium carotovorum subsp. brasiliense on Amaranth in Korea. Res. Plant Dis. 24: 339-341. https://doi.org/10.5423/RPD.2018.24.4.339
  9. Kim, J. H., Jeoung, M.-I., Hyun, I.-H. and Kim, Y. H. 2004. Potential biotypes in Korean isolates of Bipolaris cactivora associated with stem rot of cactus. Plant Pathol. J. 20: 165-171. https://doi.org/10.5423/PPJ.2004.20.3.165
  10. Kim, J. H., Joen, Y. H., Kim, S. G. and Kim, Y. H. 2007. First report on bacterial soft rot of graft cactus Chamaecereus silvestrii caused by Pectobacterium carotovorum subsp. carotovorum in Korea. Plant Pathol. J. 23: 314-317. https://doi.org/10.5423/PPJ.2007.23.4.314
  11. Kim, Y. H., Jun, O. K., Sung, M. J., Shin, J.-S., Kim, J. H. and Jeoung M.-I. 2000. Occurrence of colletotrichum stem rot caused by Glomerella cingulata on graft cactus in Korea. Plant Pathol. J. 16: 242-245.
  12. Korea Agro-Fisheries and Food Trade Corporation. 2020. Export news. URL https://www.kati.net/board/exportNewsList.do?menu_dept3=72 [10 January 2022].
  13. Kumar, S., Stecher, G. and Tamura, K. 2016. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 33: 1870-1874. https://doi.org/10.1093/molbev/msw054
  14. Lee, D. H., Kim, J.-B., Lim, J.-A., Han, S.-W. and Heu, S. 2013. Genetic diversity of Pectobacterium carotovorum subsp. brasiliensis isolated in Korea. Plant Pathol. J. 30: 117-124.
  15. Ministry of Agriculture, Food and Rural Affairs. 2020. Data by policy. URL https://www.mafra.go.kr/mafra/366/subview.do [10 January 2022].
  16. Mejia-Sanchez, D., Aranda-Ocampo, S., Nava-Diaz, C. Teliz-Ortiz, D., Livera-Munoz, M., De La Torre-Almaraz, R. et al. 2019. Pectobacterium carotovorum subsp. brasiliense causes soft rot and death of Neobuxbaumia tetetzo in Zapotitlan salinas valley, Puebla, Mexico. Plant Dis. 103: 398-403. https://doi.org/10.1094/PDIS-02-18-0370-RE
  17. Oulghazi, S., Sarfraz, S., Zaczek-Moczydlowska, M. A., Khayi, S., EdDra, A., Lekbach, Y. et al. 2021. Pectobacterium brasiliense: genomics, host range and disease management. Microorganisms 9: 106. https://doi.org/10.3390/microorganisms9010106
  18. Portier, P., Pedron, J., Taghouti, G., Saux, M. F.-L., Caullireau, E., Bertrand, C. et al. 2019. Elevation of Pectobacterium carotovorum subsp. odoriferum to species level as Pectobacterium odoriferum sp. nov., proposal of Pectobacterium brasiliense sp. nov. and Pectobacterium actinidiae sp. nov., emended description of Pectobacterium carotovorum and description of Pectobacterium versatile sp. nov., isolated from streams and symptoms on diverse plants. Int. J. Syst. Evol. Microbiol. 69: 3207-3216. https://doi.org/10.1099/ijsem.0.003611
  19. Schaad, N. W., Jones, J. B. and Chun, W. 2001. Laboratory Guide for Identification of Plant Pathogenic Bacteria. APS Press, St. Paul, MN, USA. 373 pp.
  20. Slawiak, M., van Beckhoven, J. R. C. M., Speksnijder, A. G. C. L., Czajkowski, R., Grabe, G. and van der Wolf, J. M. 2009. Biochemical and genetical analysis reveal a new clade of biovar 3 Dickeya spp. strains isolated from potato in Europe. Eur. J. Plant Pathol. 125: 245-261. https://doi.org/10.1007/s10658-009-9479-2
  21. Waleron, M., Waleron, K., Podhajska, A. J. and Lojkowska, E. 2002. Genotyping of bacteria belonging to the former Erwinia genus by PCR-RFLP analysis of a recA gene fragment. Microbiology 148: 583-595. https://doi.org/10.1099/00221287-148-2-583
  22. Weisburg, W. G., Barns, S. M., Pelletier, D. A. and Lane, D. J. 1991. 16S ribosomal DNA amplification for phylogenetic study. J. Bacteriol. 173: 697-703. https://doi.org/10.1128/jb.173.2.697-703.1991