• Title/Summary/Keyword: Pectobacterium brasiliense

Search Result 9, Processing Time 0.022 seconds

Pectobacterium brasiliense as a Causative Agent for Soft Rot of Radish in Korea

  • Kyoung-Taek Park;Soo-Min Hong;Chang-Gi Back;In-Kyu Kang;Seung-Yeol Lee;Leonid N. Ten;Hee-Young Jung
    • Research in Plant Disease
    • /
    • v.29 no.1
    • /
    • pp.64-71
    • /
    • 2023
  • In October 2021, soft rot disease seriously affected radish crop in Dangjin, Chungcheongnam-do, Korea. The infected radishes were stunted and turned dark green, with yellowish leaf foliage. A slimy, wet, and decayed pith region was observed in the infected roots. The bacterial strain KNUB-03-21 was isolated from infected roots. The biochemical and morphological characteristics of the isolate were similar to those of Pectobacterium brasiliense. Phylogenetic analysis based on the sequences of the 16S rRNA region and the concatenated DNA polymerase III subunit tau (dnaX), leucine-tRNA ligase (leuS), and recombinase subunit A (recA) genes confirmed that the isolate is a novel strain of P. brasiliense. Artificial inoculation of radish with P. brasiliense KNUB-03-21 resulted in soft rot symptoms similar to those observed in infected radish in the field; subsequently, P. brasiliense KNUB-03-21 was reisolated and reidentified. To our knowledge, this is the first report of P. brasiliense as a causal pathogen of radish soft rot in Korea.

First Report of Soft Rot Caused by Pectobacterium brasiliense on Cucumber in Korea

  • Soo-Min Hong;Kyoung-Taek Park;Leonid N. Ten;Chang-Gi Back;In-Kyu Kang;Seung-Yeol Lee;Hee-Young Jung
    • Research in Plant Disease
    • /
    • v.29 no.3
    • /
    • pp.304-309
    • /
    • 2023
  • Wilted and water-soaked lesion symptoms were observed on cucumbers in greenhouses located in Daejeon, Chungcheongnam-do, Korea, in June 2021. A bacterial strain, designated KNUB-04-21, was isolated from the cucumbers, which was subsequently identified as Pectobacterium brasiliense through a phylogenetic analysis based on sequences of the 16S rRNA region, dnaX, leuS, and recA genes. The biochemical characteristics of KNUB-04-21 were also similar to those of P. brasiliense through investigation using the API ID 32 GN system. The pathogenicity of KNUB-04-21 was confirmed by inoculating it into healthy cucumber plants. The reisolated strains were also found to be same to the original strain. To our knowledge, this is the first report of P. brasiliense being identified as the causative agent of cucumber soft rot in Korea.

First Report of Melon Soft Rot Disease Caused by Pectobacterium brasiliense in Korea

  • Kyoung-Taek Park;Leonid N. Ten;Chang-Gi Back;Soo-Min Hong;Seung-Yeol Lee;Jeung-Sul Han;Hee-Young Jung
    • Research in Plant Disease
    • /
    • v.29 no.3
    • /
    • pp.310-315
    • /
    • 2023
  • In May 2021, characteristic soft rot symptoms, including soft, watery, slimy, black rot, wilting, and leaf collapse, were observed on melon plants (Cucumis melo) in Gokseong, Jeollanam-do, Korea. A bacterial strain, designated KNUB-06-21, was isolated from infected plant samples, taxonomically classified, and phylogenetically analyzed using 16S rRNA and housekeeping gene sequencing. Strain KNUB-06-21 was also examined for compound utilization using the API ID 32 GN system and strain KNUB-06-21 was identified as Pectobacterium brasiliense. Subsequent melon stem inoculation studies using strain KNUB-06-21 showed soft rot symptoms similar to field plants. Re-isolated strains shared phenotypic and molecular characteristics with the original P. brasiliense KNUB-06-21 strain. To our knowledge, ours is the first report of P. brasiliense causing melon soft rot disease in Korea.

First Report of Pectobacterium brasiliense Causing Soft Rot on Graft Cactus in Korea

  • Park, Kyoung-Taek;Hong, Soo-Min;Back, Chang-Gi;Kim, San Yeong;Lee, Seung-Yeol;Kang, In-Kyu;Ten, Leonid N.;Jung, Hee-Young
    • Research in Plant Disease
    • /
    • v.28 no.3
    • /
    • pp.172-178
    • /
    • 2022
  • The graft cactus (Gymnocalycium mihanovichii) continues to be exported to more than 20 countries worldwide. In April 2021, typical bacterial symptoms of soft rot were observed in the graft cactus (cv. Yeonbit) in Goyang, Gyeonggi-do, Korea, resulting in economic losses in cactus production. The stems turned dark brown and the flowers were covered with black rot. The bacterial strain designated as KNUB-01-21 was isolated from infected stems and flowers. The results of the morphological and biochemical tests of the isolate were similar to those of Pectobacterium brasiliense. For molecular analysis, the 16S rRNA region and three housekeeping genes (dnaX, leuS, and recA) of the strain KNUB-01-21 were amplified. Based on the results of the molecular analysis and morphological and biochemical tests, KNUB-01-21 was identified as P. brasiliense. The pathogenicity of KNUB-01-21 on graft cactus was confirmed by an inoculation test. Artificial inoculation using P. brasiliense KNUB-01-21 produced soft rot symptoms on the grafted cactus, and the same bacterium was re-isolated and re-identified. This is the first report of P. brasiliense causing soft rot in graft cactus in Korea.

First Report of Pectobacterium brasiliense Causing Bitter Melon Soft Rot Disease in Korea

  • Kyoung-Taek Park;Leonid N. Ten;Soo-Min Hong;Chang-Gi Back;Seung-Yeol Lee;Hee-Young Jung
    • Research in Plant Disease
    • /
    • v.29 no.4
    • /
    • pp.452-458
    • /
    • 2023
  • In the Goesan region, located in Chungcheongbuk-do, Korea, a significant outbreak of soft rot infections was documented in August 2021, affecting fruits of Momordica charantia, commonly known as bitter melon or bitter gourd. The symptoms included a noticeable transition to yellowing in the affected fruits, eventually leading to their collapse. The bacterial strain KNUB-09-21 was isolated from the diseased fruits. Molecular analysis, using the sequences of the 16S rRNA region and three housekeeping genes (dnaX, recA, and leuS), along with the results of compound utilization in the API ID 32 GN system, provide strong evidence for the identification of the isolate KNUB-09-21 as Pectobacterium brasiliense. The pathogenicity of strain KNUB-09-21 on M. charantia was confirmed through a controlled inoculation test. Within two days, inoculated fruits displayed soft rot symptoms closely resembling those observed in naturally affected fruits. This is the first report of soft rot on M. charantia in Korea.

Antibiotic Resistance of Pectobacterium Korean Strains Susceptible to the Bacteriophage phiPccP-1

  • Vu, Nguyen Trung;Roh, Eunjung;Thi, Thuong Nguyen;Oh, Chang Sik
    • Research in Plant Disease
    • /
    • v.28 no.3
    • /
    • pp.166-171
    • /
    • 2022
  • Commercial products with antibiotics like streptomycin as active ingredients have been used to control soft rot disease caused by Pectobacterium species for a long time. In this study, antibiotic resistance of twenty-seven Korean strains of Pectobacterium species including P. carotovorum, P. odoriferum, P. brasiliense, and P. parmenteri, which were previously shown to be susceptible to the bacteriophage phiPccP-1 was surveyed using a disk diffusion assay. While all strains were highly susceptible to ampicillin, kanamycin, chloramphenicol, tetracycline, and rifampicin, some strains showed weak susceptibility to 300 ㎍/ml of streptomycin. Furthermore, some of them are partially or completely resistant to commercial pesticides-Buramycinand streptomycin at the concentration of 250 ㎍/ml that is recommended by the manufacturer for streptomycin-based pesticides. These results indicate the presence of streptomycin-resistant Pectobacterium strains in South Korea, and the development of antibiotic alternatives to control soft rot is needed.

Distribution of Pectobacterium Species Isolated in South Korea and Comparison of Temperature Effects on Pathogenicity

  • Jee, Samnyu;Choi, Jang-Gyu;Lee, Young-Gyu;Kwon, Min;Hwang, Ingyu;Heu, Sunggi
    • The Plant Pathology Journal
    • /
    • v.36 no.4
    • /
    • pp.346-354
    • /
    • 2020
  • Pectobacterium, which causes soft rot disease, is divided into 18 species based on the current classification. A total of 225 Pectobacterium strains were isolated from 10 main cultivation regions of potato (Solanum tuberosum), napa cabbage (Brassica rapa subsp. pekinensis), and radish (Raphanus sativus) in South Korea; 202 isolates (90%) were from potato, 18 from napa cabbage, and five from radish. Strains were identified using the Biolog test and phylogenetic analysis. The pathogenicity and swimming motility were tested at four different temperatures. Pectolytic activity and plant cell-wall degrading enzyme (PCWDE) activity were evaluated for six species (P. carotovorum subsp. carotovorum, Pcc; P. odoriferum, Pod; P. brasiliense, Pbr; P. versatile, Pve; P. polaris, Ppo; P. parmentieri, Ppa). Pod, Pcc, Pbr, and Pve were the most prevalent species. Although P. atrosepticum is a widespread pathogen in other countries, it was not found here. This is the first report of Ppo, Ppa, and Pve in South Korea. Pectobacterium species showed stronger activity at 28℃ and 32℃ than at 24℃, and showed weak activity at 37℃. Pectolytic activity decreased with increasing temperature. Activity of pectate lyase was not significantly affected by temperature. Activity of protease, cellulase, and polygalacturonase decreased with increasing temperature. The inability of isolated Pectobacterium to soften host tissues at 37℃ may be a consequence of decreased motility and PCWDE activity. These data suggest that future increases in temperature as a result of climate change may affect the population dynamics of Pectobacterium.

A New Approach Using the SYBR Green-Based Real-Time PCR Method for Detection of Soft Rot Pectobacterium odoriferum Associated with Kimchi Cabbage

  • Yong Ju, Jin;Dawon, Jo;Soon-Wo, Kwon;Samnyu, Jee;Jeong-Seon, Kim;Jegadeesh, Raman;Soo-Jin, Kim
    • The Plant Pathology Journal
    • /
    • v.38 no.6
    • /
    • pp.656-664
    • /
    • 2022
  • Pectobacterium odoriferum is the primary causative agent in Kimchi cabbage soft-rot diseases. The pathogenic bacteria Pectobacterium genera are responsible for significant yield losses in crops. However, P. odoriferum shares a vast range of hosts with P. carotovorum, P. versatile, and P. brasiliense, and has similar biochemical, phenotypic, and genetic characteristics to these species. Therefore, it is essential to develop a P. odoriferumspecific diagnostic method for soft-rot disease because of the complicated diagnostic process and management as described above. Therefore, in this study, to select P. odoriferum-specific genes, species-specific genes were selected using the data of the P. odoriferum JK2.1 whole genome and similar bacterial species registered with NCBI. Thereafter, the specificity of the selected gene was tested through blast analysis. We identified novel species-specific genes to detect and quantify targeted P. odoriferum and designed specific primer sets targeting HAD family hydrolases. It was confirmed that the selected primer set formed a specific amplicon of 360 bp only in the DNA of P. odoriferum using 29 Pectobacterium species and related species. Furthermore, the population density of P. odoriferum can be estimated without genomic DNA extraction through SYBR Green-based real-time quantitative PCR using a primer set in plants. As a result, the newly developed diagnostic method enables rapid and accurate diagnosis and continuous monitoring of soft-rot disease in Kimchi cabbage without additional procedures from the plant tissue.

First Report of Soft Rot by Pectobacterium carotovorum subsp. brasiliense on Amaranth in Korea

  • Jee, Samnyu;Choi, Jang-Gyu;Hong, Suyoung;Lee, Young-Gyu;Kwon, Min
    • Research in Plant Disease
    • /
    • v.24 no.4
    • /
    • pp.339-341
    • /
    • 2018
  • Amaranth has the potential for good materials related to nutrients and health benefits. There are several diseases of amaranth such as leaf blight, damping-off, and root rot. As a causal agent of soft rot disease, Pectobacterium spp. could infect various plant species. In this study, we isolated the bacterial pathogen causing soft rot of amaranth in South Korea. In Gangneung, Gangwon province during 2017, amaranth plants showed typical soft rot symptoms such as wilting, defoliation and odd smell. To isolate pathogen, the macerated tissues of contaminated amaranth were spread onto LB agar plates and purified by a single colony subculture. One ml bacterial suspension of a representative isolate was injected to the stem of five seedlings of 2-week-old amaranth with a needle. Ten mM magnesium sulfate solution was used as a negative control. 16S rDNA gene and recA gene were sequenced and compared with the reference sequences using the BLAST. In the phylogenetic tree based on 16S rDNA gene and recA gene, GSA1 strain was grouped in Pcb.