• Title/Summary/Keyword: bismuth vanadate

Search Result 10, Processing Time 0.025 seconds

Preparation of Bismuth Vanadate Pigment from Aqueous Solutions (습식법에 의한 Bismuth Vanadate 안료의 제조)

  • Kim, Jung-Teag;Kim, Tae-Won;Heo, Jea-Jun;Na, Seog-Eun;Joo, Jung-Pyo;Chun, Jae-Ki;Ju, Chang-Sik
    • Korean Chemical Engineering Research
    • /
    • v.44 no.2
    • /
    • pp.114-120
    • /
    • 2006
  • Bismuth vanadate is one of the environmentally benign substitutes for conventional inorganic pigments composed of heavy metals. The effect of process parameters on the physical properties of bismuth vanadate pigment prepared from aqueous solutions of potassium vanadate and bismuth nitrate were experimentally examined. Two aqueous solutions were fed into precipitation chamber at the same flow rate, and precipitates were formed at primary pH of 4.5 and secondary pH of 7.0~7.5. After aging for 3 hours in reaction mixture, 3 hours' calcination at $400^{\circ}C$ gave bismuth vanadate pigment with a good color and hiding power. Increase in molybdenum concentration in reaction mixture increased the hiding power of the pigment, but the other minor constituents had minor effect on the physical properties of the pigment.

Synthesis of Bismuth Vanadate as Visible-light Photocatalyst by Precipitation Reaction (침전 반응에 의한 가시광 광촉매 Bismuth Vanadate 합성)

  • Kim, Sang-Mun;Lee, Jae-Yong;Mun, Choo-Yeun;Lee, Hean-Soo
    • Journal of the Korean Ceramic Society
    • /
    • v.48 no.6
    • /
    • pp.630-635
    • /
    • 2011
  • Bismuth vanadate($BiVO_4$) with monoclinic phase as photocatalyst under visible light is synthesized by precipitation reaction in hot water. Properties such as crystal phase, particle morphology and visual light absorbance as well as the effects of thermal treatment for $BiVO_4$ powders are investigated. $BiVO_4$ powders with both single monoclinic phase and 0.2 ${\mu}m$ in particle size are synthesized when precipitate is stirred in water for 5 h at 95$^{\circ}C$. Well-developed monoclinic phase and light absorption property under 535 nm are observed as a result of thermal treatment for 1 h at 300$^{\circ}C$ after precipitation reaction in water for 5 h at 95$^{\circ}C$. Degradation of monoclinic crystal is found in firing above 350$^{\circ}C$, and particle growth is occurred in firing above 550$^{\circ}C$.

Hydrothermal Synthesis of Metal-doped BiVO4 Powder and its Thermochromic Properties (금속이 도핑된 BiVO4 분말의 수열 합성 및 이의 열 변색 특성)

  • Wu, Guan Zhu;Son, Dae Hee;Jin, Young Eup;Lee, Gun-Dae;Park, Seong Soo
    • Applied Chemistry for Engineering
    • /
    • v.26 no.6
    • /
    • pp.681-685
    • /
    • 2015
  • In this study, pure $BiVO_4$ powder and metal-doped $M-BiVO_4$ (M = Mg, Cu) powder, well known as thermochromic materials, were prepared from a mixed aqueous solution of bismuth nitrate ($Bi(NO_3)_3$) and ammonium vanadate ($NH_4VO_3$) in autoclave by hydrothermal method. The crystal structure, microstructure, and thermochromic property of samples were analyzed using FE-SEM, FT-IR, XRD, DSC, UV-Vis-NIR spectroscopy and colorimeter. When heating samples above phase transition temperature, the color of $M-BiVO_4$ (M = Mg, Cu) sample was thermally changed more clearly than that of using only pure $BiVO_4$ sample.

Luminescent Properties of Eu3+ -Activated Rare-Earth Phosphates (Eu3+ 로 활성화된 희토류 인산염의 발광 특성)

  • ;Eric R. Kreidler
    • Journal of the Korean Ceramic Society
    • /
    • v.28 no.3
    • /
    • pp.252-258
    • /
    • 1991
  • Spectral properties of europium activated intermediate compounds in the system R2O3-P2O5(R=La, Y, and Gd) are presented, including also phosphors with bismuth and vanadate sensitization. The sensitized phosphors are less efficient than unsensitized phosphors. (The ratio of oxygen to phosphorus effects the charge transfer band) Most phosphors have low efficiencies, but La3PO7 and Gd3PO7 hosts are possible for commercial luminescent materials.

  • PDF

Solution-Processed Metal Oxide Thin Film Nanostructures for Water Splitting Photoelectrodes: A Review

  • Lee, Mi Gyoung;Park, Jong Seong;Jang, Ho Won
    • Journal of the Korean Ceramic Society
    • /
    • v.55 no.3
    • /
    • pp.185-202
    • /
    • 2018
  • Photoelectrochemical (PEC) cells can convert solar energy, the largest potential source of renewable energy, into hydrogen fuel which can be stored, transported, and used on demand. In terms of cost competitiveness compared with fossil fuels, however, both photocatalytic efficiency and cost-effectiveness must be achieved simultaneously. Improvement of cost-effective, scalable, versatile, and eco-friendly fabrication methods has emerged as an urgent mission for PEC cells, and solution-based fabrication methods could be capable of meeting these demands. Herein, we review recent challenges for various nanostructured oxide photoelectrodes fabricated by solution-based processes. Hematite, tungsten oxide, bismuth vanadate, titanium oxide, and copper oxides are the main oxides focused on, and various strategies have been attempted with respect to these photocatalyst materials. The effects of nanostructuring, heterojunctions, and co-catalyst loading on the surface are discussed. Our review introduces notable solution-based processes for water splitting photoelectrodes and gives an outlook on eco-friendly and cost-effective approaches to solar fuel generation and innovative artificial photosynthesis technologies.

Catalytic Activity of BiVO4-graphene Nanocomposites for the Reduction of Nitrophenols and the Photocatalytic Degradation of Organic Dyes

  • Li, Jiulong;Ko, Jeong Won;Ko, Weon Bae
    • Elastomers and Composites
    • /
    • v.51 no.3
    • /
    • pp.240-249
    • /
    • 2016
  • $BiVO_4$ nanomaterial was synthesized from bismuth (III) nitrate pentahydrate [$Bi(NO_3)_3{\cdot}5H_2O$] and ammonium vanadate (V) [$NH_4VO_3$]. The $BiVO_4$-graphene nanocomposite was fabricated by calcining the $BiVO_4$ nanomaterial and graphene under an oxygen-free atmosphere at $700^{\circ}C$. X-ray diffraction (XRD) and scanning electron microscopy (SEM) were employed to characterize structural and morphological properties of samples. The catalytic activity of the $BiVO_4$-graphene nanocomposite was studied for the reduction of 4-nitrophenol, 3-nitrophenol and 2-nitrophenol by sodium borohydride [$NaBH_4$]. The photocatalytic activity of the $BiVO_4$-graphene nanocomposite was demonstrated by the degradation of organic dyes like BG, MB, MO and RhB under irradiation at 365 nm. The catalytic and photocatalytic activity were studied by UV-vis spectrophotometry.

Hydrothermally synthesized Al-doped BiVO4 as a potential antibacterial agent against methicillin-resistant Staphylococcus aureus

  • Vicas, Charles Sundar;Keerthiraj, Namratha;Byrappa, Nayan;Byrappa, Kullaiah
    • Environmental Engineering Research
    • /
    • v.24 no.4
    • /
    • pp.566-571
    • /
    • 2019
  • One-pot hydrothermal route was adopted to synthesize Al:BiVO4, at 4 h and 8 h reaction durations, by adding 1% aluminiumoxide powder (w/v) to the precursors. The products were investigated using several characterization techniques that conform a significant morphological change and a decrease in bandgap energy of the materials upon Al modification of scheelite monoclinic bismuth vanadate matrix at both hydrothermal durations. Antibacterial experiments were performed against methicillin-resistant Staphylococcus aureus in visible light condition to harness the photoxidation property of Al-doped BiVO4 and compare to that of unaltered BiVO4. Minimum inhibitory concentration of the synthesized materials was identified. The results indicate that Al-doping on BiVO4 has a significant effect on its photocatalytic antibacterial performance. Al:BiVO4 synthesized at 8 h hydrothermal treatment parades excellent sunlight-driven photocatalysis compared to the one synthesized at 4 h.

Hydrogen Evolution from Biological Protein Photosystem I and Semiconductor BiVO4 Driven by Z-Schematic Electron Transfer

  • Shin, Seonae;Kim, Younghye;Nam, Ki Tae
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.251.2-251.2
    • /
    • 2013
  • Natural photosynthesis utilizes two proteins, photosystem I and photosystem II, to efficiently oxidize water and reduce NADP+ to NADPH. Artificial photosynthesis which mimics this process achieve water splitting through a two-step Z-schematic water splitting process using man-made synthetic materials for hydrogen fuel production. In this study, Z-scheme system was achieved from the hybrid materials which composed of hydrogen production part as photosystem I protein and water oxidizing part as semiconductor BiVO4. Utilizing photosystem I as the hydrogen evolving part overcomes the problems of existing hydrogen evolving p-type semiconductors such as water instability, expensive cost, few available choices and poor red light (>600 nm) absorbance. Some problems of photosystem II, oxygen evolving part of natural photosynthesis, such as demanding isolation process and D1 photo-damage can also be solved by utilizing BiVO4 as the oxygen evolving part. Preceding research has not suggested any protein-inorganic-hybrid Z-scheme composed of both materials from natural photosynthesis and artificial photosynthesis. In this study, to realize this Z-schematic electron transfer, diffusion step of electron carrier, which usually degrades natural photosynthesis efficiency, was eliminated. Instead, BiVO4 and Pt-photosystem I were all linked together by the mediator gold. Synthesized all-solid-state hybrid materials show enhanced hydrogen evolution ability directly from water when illuminated with visible light.

  • PDF

Effect of Calcination Temperature on the Microstructure and Photocatalytic Activity of Electrospun BiVO4 Nanofiber (전기방사를 이용하여 합성한 BiVO4 나노섬유의 미세구조와 광촉매 특성에 하소 온도가 미치는 영향)

  • Ji, Myeongjun;Kim, Jeong Hyun;Ryu, Cheol-Hui;Ko, Yun Taek;Lee, Young-In
    • Journal of Powder Materials
    • /
    • v.27 no.3
    • /
    • pp.226-232
    • /
    • 2020
  • Bismuth vanadate (BiVO4) is considered a potentially attractive candidate for the visible-light-driven photodegradation of organic pollutants. In an effort to enhance their photocatalytic activities, BiVO4 nanofibers with controlled microstructures, grain sizes, and crystallinities are successfully prepared by electrospinning followed by a precisely controlled heat treatment. The structural features, morphologies, and photo-absorption performances of the asprepared samples are systematically investigated and can be readily controlled by varying the calcination temperature. From the physicochemical analysis results of the synthesized nanofiber, it is found that the nanofiber calcines at a lower temperature, shows a smaller crystallite size, and lower crystallinity. The photocatalytic degradation of rhodamine-B (RhB) reveals that the photocatalytic activity of the BiVO4 nanofibers can be improved by a thermal treatment at a relatively low temperature because of the optimization of the conflicting characteristics, crystallinity, crystallite size, and microstructure. The photocatalytic activity of the nanofiber calcined at 350℃ for the degradation of RhB under visible-light irradiation exhibits a greater photocatalytic activity than the nanofibers synthesized at 400℃ and 450℃.