DOI QR코드

DOI QR Code

Solution-Processed Metal Oxide Thin Film Nanostructures for Water Splitting Photoelectrodes: A Review

  • Lee, Mi Gyoung (Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University) ;
  • Park, Jong Seong (Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University) ;
  • Jang, Ho Won (Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University)
  • Received : 2018.02.28
  • Accepted : 2018.03.26
  • Published : 2018.05.31

Abstract

Photoelectrochemical (PEC) cells can convert solar energy, the largest potential source of renewable energy, into hydrogen fuel which can be stored, transported, and used on demand. In terms of cost competitiveness compared with fossil fuels, however, both photocatalytic efficiency and cost-effectiveness must be achieved simultaneously. Improvement of cost-effective, scalable, versatile, and eco-friendly fabrication methods has emerged as an urgent mission for PEC cells, and solution-based fabrication methods could be capable of meeting these demands. Herein, we review recent challenges for various nanostructured oxide photoelectrodes fabricated by solution-based processes. Hematite, tungsten oxide, bismuth vanadate, titanium oxide, and copper oxides are the main oxides focused on, and various strategies have been attempted with respect to these photocatalyst materials. The effects of nanostructuring, heterojunctions, and co-catalyst loading on the surface are discussed. Our review introduces notable solution-based processes for water splitting photoelectrodes and gives an outlook on eco-friendly and cost-effective approaches to solar fuel generation and innovative artificial photosynthesis technologies.

Keywords

References

  1. X. Li, J. Yu, J. Low, Y. Fang, J. Xiao, and X. Chen, "Engineering Heterogeneous Semiconductors for Solar Water Splitting," J. Mater. Chem. A, 3 [6] 2485-534 (2015). https://doi.org/10.1039/C4TA04461D
  2. J. Gan, X. Lu, and Y. Tong, "Towards Highly Efficient Photoanodes: Boosting Sunlight-Driven Semiconductor Nanomaterials for Water Oxidation," Nanoscale, 6 [13] 7142-64 (2014). https://doi.org/10.1039/c4nr01181c
  3. M. G. Lee, D. H. Kim, W. Sohn, C. W. Moon, H. Park, S. Lee, and H. W. Jang, "Conformally Coated $BiVO_4$ Nanodots on Porosity-Controlled $WO_3$ Nanorods as Highly Efficient Type II Heterojunction Photoanodes for Water Oxidation," Nano Energy, 28 250-60 (2016). https://doi.org/10.1016/j.nanoen.2016.08.046
  4. Z.-F. Huang, L. Pan, J.-J. Zou, X. Zhang, and L. Wang, "Nanostructured Bismuth Vanadate-Based Materials for Solar-Energy-Driven Water Oxidation: A Review on Recent Progress," Nanoscale, 6 [23] 14044-63 (2014). https://doi.org/10.1039/C4NR05245E
  5. M. G. Lee, C. W. Moon, H. Park, W. Sohn, S. B. Kang, S. Lee, K. J. Choi, and H. W. Jang, "Dominance of Plasmonic Resonant Energy Transfer over Direct Electron Transfer in Substantially Enhanced Water Oxidation Activity of $BiVO_4$ by Shape-Controlled Au Nanoparticles," Small, 13 [37] 1701644 (2017). https://doi.org/10.1002/smll.201701644
  6. C. Jiang, S. J. Moniz, A. Wang, T. Zhang, and J. Tang, "Photoelectrochemical Devices for Solar Water Splitting- Materials and Challenges," Chem. Soc. Rev., 46 [15] 4645-60 (2017). https://doi.org/10.1039/C6CS00306K
  7. T. Hisatomi and K. Domen, "Introductory Lecture: Sunlight-Driven Water Splitting and Carbon Dioxide Reduction by Heterogeneous Semiconductor Systems as Key Processes in Artificial Photosynthesis," Faraday Discuss., 198 11-35 (2017). https://doi.org/10.1039/C6FD00221H
  8. Y. Yang, S. Niu, D. Han, T. Liu, G. Wang, and Y. Li, "Progress in Developing Metal Oxide Nanomaterials for Photoelectrochemical Water Splitting," Adv. Energy Mater., 7 [19] 1700555 (2017). https://doi.org/10.1002/aenm.201700555
  9. I. D. Sharp, J. K. Cooper, F. M. Toma, and R. Buonsanti, "Bismuth Vanadate as a Platform for Accelerating Discovery and Development of Complex Transition-Metal Oxide Photoanodes," ACS Energy Lett., 2 [1] 139-50 (2016). https://doi.org/10.1021/acsenergylett.6b00586
  10. H. M. Chen, C. K. Chen, R.-S. Liu, L. Zhang, J. Zhang, and D. P. Wilkinson, "Nano-Architecture and Material Designs for Water Splitting Photoelectrodes," Chem. Soc. Rev., 41 [17] 5654-71 (2012). https://doi.org/10.1039/c2cs35019j
  11. H. Wang, L. Zhang, Z. Chen, J. Hu, S. Li, Z. Wang, J. Liu, and X. Wang, "Semiconductor Heterojunction Photocatalysts: Design, Construction, and Photocatalytic Performances," Chem. Soc. Rev., 43 [15] 5234-44 (2014). https://doi.org/10.1039/C4CS00126E
  12. M. G. Lee and H. W. Jang, "Photoactivities of Nanostructured ${\alpha}-Fe_2O_3$ Anodes Prepared by Pulsed Electrodeposition," J. Korean Ceram. Soc., 53 [4] 400-5 (2016). https://doi.org/10.4191/kcers.2016.53.4.400
  13. J. Choi, J. T. Song, H. S. Jang, M.-J. Choi, D. M. Sim, S. Yim, H. Lim, Y. S. Jung, and J. Oh, "Interfacial Band-Edge Engineered $TiO_2$ Protection Layer on $Cu_2O$ Photocathodes for Efficient Water Reduction Reaction," Electron. Mater. Lett., 13 [1] 57-65 (2017). https://doi.org/10.1007/s13391-017-6316-1
  14. K. S. Choi, H. S. Jang, C. M. McShane, C. G. Read, and J. A. Seabold, "Electrochemical Synthesis of Inorganic Polycrystalline Electrodes with Controlled Architectures," MRS Bull., 35 [10] 753-60 (2010). https://doi.org/10.1557/mrs2010.504
  15. X. B. Chen, S. H. Shen, L. J. Guo, and S. S. Mao, "Semiconductor-Based Photocatalytic Hydrogen Generation," Chem. Rev., 110 [11] 6503-70 (2010). https://doi.org/10.1021/cr1001645
  16. Y. Tachibana, L. Vayssieres, and J. R. Durrant, "Artificial Photosynthesis for Solar Water-Splitting," Nat. Photonics, 6 [8] 511-18 (2012). https://doi.org/10.1038/nphoton.2012.175
  17. K. Maeda and K. Domen, "Photocatalytic Water Splitting: Recent Progress and Future Challenges," J. Phys. Chem. Lett., 1 [18] 2655-61 (2010). https://doi.org/10.1021/jz1007966
  18. M. Vaseem, A. Umar, S. H. Kim, and Y.-B. Hahn, "Low-Temperature Synthesis of Flower-Shaped CuO Nanostructures by Solution Process: Formation Mechanism and Structural Properties," J. Phys. Chem. C, 112 [15] 5729-35 (2008). https://doi.org/10.1021/jp710358j
  19. G. H. A. Therese and P. V. Kamath, "Electrochemical Synthesis of Metal Oxides and Hydroxides," Chem. Mater., 12 [5] 1195-204 (2000). https://doi.org/10.1021/cm990447a
  20. K. Byrappa and M. Yoshimura, Handbook of Hydrothermal Technology; William Andrew, 2012.
  21. N. Liu, X. Chen, J. Zhang, and J. W. Schwank, "A Review on $TiO_2$-based Nanotubes Synthesized via Hydrothermal Method: Formation Mechanism, Structure Modification, and Photocatalytic Applications," Catal. Today, 225 34-51 (2014). https://doi.org/10.1016/j.cattod.2013.10.090
  22. C. J. Brinker and G. W. Scherer, Sol-Gel Science: The Physics and Chemistry of Sol-Gel Processing; Academic Press, 2013.
  23. Y.-H. Kim, J.-S. Heo, T.-H. Kim, S. Park, M.-H. Yoon, J. Kim, M. S. Oh, G.-R. Yi, Y.-Y. Noh, and S. K. Park, "Flexible Metal-Oxide Devices Made by Room-Temperature Photochemical Activation of Sol-Gel Films," Nature, 489 [7414] 128-32 (2012). https://doi.org/10.1038/nature11434
  24. S. Gorer and G. Hodes, "Quantum Size Effects in the Study of Chemical Solution Deposition Mechanisms of Semiconductor Films," J. Phys. Chem., 98 [20] 5338-46 (1994). https://doi.org/10.1021/j100071a026
  25. M. G. Walter, E. L. Warren, J. R. McKone, S. W. Boettcher, Q. X. Mi, E. A. Santori, and N. S. Lewis, "Solar Water Splitting Cells," Chem. Rev., 110 [11] 6446-73 (2010). https://doi.org/10.1021/cr1002326
  26. S. J. Moniz, S. A. Shevlin, D. J. Martin, Z.-X. Guo, and J. Tang, "Visible-Light Driven Heterojunction Photocatalysts for Water Splitting-a Critical Review," Energy Environ. Sci., 8 [3] 731-59 (2015). https://doi.org/10.1039/C4EE03271C
  27. C. X. Kronawitter, L. Vayssieres, S. Shen, L. Guo, D. A. Wheeler, J. Z. Zhang, B. R. Antoun, and S. S. Mao, "A Perspective on Solar-Driven Water Splitting with All-Oxide Hetero-Nanostructures," Energy Environ. Sci., 4 [10] 3889-99 (2011). https://doi.org/10.1039/c1ee02186a
  28. D. Kang, T. W. Kim, S. R. Kubota, A. C. Cardiel, H. G. Cha, and K. S. Choi, "Electrochemical Synthesis of Photoelectrodes and Catalysts for Use in Solar Water Splitting," Chem. Rev., 115 [23] 12839-87 (2015). https://doi.org/10.1021/acs.chemrev.5b00498
  29. Z. W. Seh, J. Kibsgaard, C. F. Dickens, I. Chorkendorff, J. K. Norskov, and T. F. Jaramillo, "Combining Theory and Experiment in Electrocatalysis: Insights into Materials Design," Science, 355 [6321] eaad4998 (2017).
  30. T. Lindgren, L. Vayssieres, H. Wang, and S.-E. Lindquist, "Photo-Oxidation of Water at Hematite Electrodes," Chem. Phys. Nanostruct. Semicond., 83-110 (2003).
  31. H. Tsubomura, N. Yamamoto, N. Matsuo, and Y. Okada, "The Visible Absorption Spectrum of Water," Proc. Jpn. Acad., Ser. B, 56 [7] 403-7 (1980). https://doi.org/10.2183/pjab.56.403
  32. K. L. Hardee and A. J. Bard, "Semiconductor Electrodes V. The Application of Chemically Vapor Deposited Iron Oxide Films to Photosensitized Electrolysis," J. Electrochem. Soc., 123 [7] 1024-26 (1976). https://doi.org/10.1149/1.2132984
  33. R. K. Quinn, R. Nasby, and R. Baughman, "Photoassisted Electrolysis of Water Using Single Crystal ${\alpha}-Fe_2O_3$ Anodes," Mater. Res. Bull., 11 [8] 1011-17 (1976). https://doi.org/10.1016/0025-5408(76)90178-1
  34. J. H. Kennedy, M. Anderman, and R. Shinar, "Photoactivity of Polycrystalline ${\alpha}-Fe_2O_3$ Electrodes Doped with Group IVA Elements," J. Electrochem. Soc., 128 [11] 2371-73 (1981). https://doi.org/10.1149/1.2127253
  35. C. Sanchez, K. Sieber, and G. Somorjai, "The Photoelectrochemistry of Niobium Doped ${\alpha}-Fe_2O_3$," J. Electroanal. Chem. Interfacial Electrochem., 252 [2] 269-90 (1988). https://doi.org/10.1016/0022-0728(88)80216-X
  36. M. P. Dare-Edwards, J. B. Goodenough, A. Hamnett, and P. R. Trevellick, "Electrochemistry and Photoelectrochemistry of Iron (III) Oxide," J. Chem. Soc., Faraday Trans. 1, 79 [9] 2027-41 (1983). https://doi.org/10.1039/f19837902027
  37. J. H. Kennedy and K. W. Frese, "Photooxidation of Water at ${\alpha}-Fe_2O_3$ Electrodes," J. Electrochem. Soc., 125 [5] 709-14 (1978). https://doi.org/10.1149/1.2131532
  38. A. G. Joly, J. R. Williams, S. A. Chambers, G. Xiong, W. P. Hess, and D. M. Laman, "Carrier Dynamics in ${\alpha}-Fe_2O_3$ (0001) Thin Films and Single Crystals Probed by Femtosecond Transient Absorption and Reflectivity," J. Appl. Phys., 99 [5] 053521 (2006). https://doi.org/10.1063/1.2177426
  39. G. Horowitz, "Capacitance-Voltage Measurements and Flat-Band Potential Determination on Zr-Doped ${\alpha}-Fe_2O_3$ Single-Crystal Electrodes," J. Electroanal. Chem. Interfacial Electrochem., 159 [2] 421-36 (1983). https://doi.org/10.1016/S0022-0728(83)80638-X
  40. W. W. Gartner, "Depletion-Layer Photoeffects in Semiconductors," Phys. Rev., 116 [1] 84 (1959). https://doi.org/10.1103/PhysRev.116.84
  41. K. Itoh and J. O. M. Bockris, "Stacked Thin-Film Photoelectrode Using Iron Oxide," J. Appl. Phys., 56 [3] 874-76 (1984). https://doi.org/10.1063/1.334028
  42. K. Itoh and J. M. Bockris, "Thin Film Photoelectrochemistry: Iron Oxide," J. Electrochem. Soc., 131 [6] 1266-71 (1984). https://doi.org/10.1149/1.2115798
  43. R. Gardner, F. Sweett, and D. Tanner, "The Electrical Properties of Alpha Ferric Oxide-II.: Ferric Oxide of High Purity," J. Phys. Chem. Solids, 24 [10] 1183-96 (1963). https://doi.org/10.1016/0022-3697(63)90235-X
  44. K. Sivula, R. Zboril, F. L. Formal, R. Robert, A. Weidenkaff, J. Tucek, J. Frydrych, and M. Gratzel, "Photoelectrochemical Water Splitting with Mesoporous Hematite Prepared by a Solution-Based Colloidal Approach," J. Am. Chem. Soc., 132 [21] 7436-44 (2010). https://doi.org/10.1021/ja101564f
  45. F. L. Souza, K. P. Lopes, P. A. Nascente, and E. R. Leite, "Nanostructured Hematite Thin Films Produced by Spin-Coating Deposition Solution: Application in Water Splitting," Sol. Energy Mater. Sol. Cells, 93 [3] 362-68 (2009). https://doi.org/10.1016/j.solmat.2008.11.049
  46. J. Brillet, M. Gratzel, and K. Sivula, "Decoupling Feature Size and Functionality in Solution-Processed, Porous Hematite Electrodes for Solar Water Splitting," Nano Lett., 10 [10] 4155-60 (2010). https://doi.org/10.1021/nl102708c
  47. J. Y. Kim, D. H. Youn, K. Kang, and J. S. Lee, "Highly Conformal Deposition of an Ultrathin FeOOH Layer on a Hematite Nanostructure for Efficient Solar Water Splitting," Angew. Chem., Int. Ed., 55 [36] 10854-58 (2016). https://doi.org/10.1002/anie.201605924
  48. T. W. Kim and K.-S. Choi, "Nanoporous $BiVO_4$ Photoanodes with Dual-Layer Oxygen Evolution Catalysts for Solar Water Splitting," Science, 343 [6174] 1245026 (2014).
  49. F. E. Osterloh, "Inorganic Nanostructures for Photoelectrochemical and Photocatalytic Water Splitting," Chem. Soc. Rev., 42 [6] 2294-320 (2013). https://doi.org/10.1039/C2CS35266D
  50. G. Xi and J. Ye, "Synthesis of Bismuth Vanadate Nanoplates with Exposed {001} Facets and Enhanced Visible-Light Photocatalytic Properties," Chem. Commun., 46 [11] 1893-95 (2010). https://doi.org/10.1039/b923435g
  51. K. J. McDonald and K.-S. Choi, "A New Electrochemical Synthesis Route for a BiOI Electrode and its Conversion to a Highly Efficient Porous $BiVO_4$ Photoanode for Solar Water Oxidation," Energy Environ. Sci., 5 [9] 8553-57 (2012). https://doi.org/10.1039/c2ee22608a
  52. J. A. Seabold and K.-S. Choi, "Efficient and Stable Photo-Oxidation of Water by a Bismuth Vanadate Photoanode Coupled with an Iron Oxyhydroxide Oxygen Evolution Catalyst," J. Am. Chem. Soc., 134 [4] 2186-92 (2012). https://doi.org/10.1021/ja209001d
  53. B. Jin, E. Jung, M. Ma, S. Kim, K. Zhang, J. I. Kim, Y. Son, and J. H. Park, "Solution-Processed Yolk-Shell-Shaped $WO_3$/$BiVO_4$ Heterojunction Photoelectrode for Efficient Solar Water Splitting," J. Mater. Chem. A, 2018 [6] 2585-92 (2018).
  54. Y. Pihosh, I. Turkevych, K. Mawatari, J. Uemura, Y. Kazoe, S. Kosar, K. Makita, T. Sugaya, T. Matsui, and D. Fujita, "Photocatalytic Generation of Hydrogen by Core-Shell $WO_3$/$BiVO_4$ Nanorods with Ultimate Water Splitting Efficiency," Sci. Rep., 5 11141 (2015). https://doi.org/10.1038/srep11141
  55. A. Fujishima, T. N. Rao, and D. A. Tryk, "Titanium Dioxide Photocatalysis," J. Photochem. Photobiol., C, 1 [1] 1-21 (2000). https://doi.org/10.1016/S1389-5567(00)00002-2
  56. U. Diebold, "The Surface Science of Titanium Dioxide," Surf. Sci. Rep., 48 [5-8] 53-229 (2003). https://doi.org/10.1016/S0167-5729(02)00100-0
  57. X. Chen and S. S. Mao, "Titanium Dioxide Nanomaterials: Synthesis, Properties, Modifications, and Applications," Chem. Rev., 107 [7] 2891-959 (2007). https://doi.org/10.1021/cr0500535
  58. M. Gratzel, "A Low-Cost, High-Efficiency Solar Cell Based on Dye-Sensitized Colloidal Titanium Dioxide Films," Nature, 353 737-40 (1991). https://doi.org/10.1038/353737a0
  59. Y. Matsumoto, M. Murakami, T. Shono, T. Hasegawa, T. Fukumura, M. Kawasaki, P. Ahmet, T. Chikyow, S.-Y. Koshihara, and H. Koinuma, "Room-Temperature Ferromagnetism in Transparent Transition Metal-Doped Titanium Dioxide," Science, 291 [5505] 854-56 (2001). https://doi.org/10.1126/science.1056186
  60. A. Fujishima and K. Honda, "Electrochemical Photolysis of Water at a Semiconductor Electrode," Nature, 238 [5358] 37-8 (1972). https://doi.org/10.1038/238037a0
  61. O. Carp, C. L. Huisman, and A. Reller, "Photoinduced Reactivity of Titanium Dioxide," Prog. Solid State Chem., 32 [1-2] 33-177 (2004). https://doi.org/10.1016/j.progsolidstchem.2004.08.001
  62. X. Chen, L. Liu, Y. Y. Peter, and S. S. Mao, "Increasing Solar Absorption for Photocatalysis with Black Hydrogenated Titanium Dioxide Nanocrystals," Science, 331 [6018] 746-50 (2011). https://doi.org/10.1126/science.1200448
  63. T. Umebayashi, T. Yamaki, H. Itoh, and K. Asai, "Band Gap Narrowing of Titanium Dioxide by Sulfur Doping," Appl. Phys. Lett., 81 [3] 454-56 (2002). https://doi.org/10.1063/1.1493647
  64. R. I. Bickley, T. Gonzalez-Carreno, J. S. Lees, L. Palmisano, and R. J. Tilley, "A Structural Investigation of Titanium Dioxide Photocatalysts," J. Solid State Chem., 92 [1] 178-90 (1991). https://doi.org/10.1016/0022-4596(91)90255-G
  65. M. Pelaez, N. T. Nolan, S. C. Pillai, M. K. Seery, P. Falaras, A. G. Kontos, P. S. Dunlop, J. W. Hamilton, J. A. Byrne, and K. O'shea, "A Review on the Visible Light Active Titanium Dioxide Photocatalysts for Environmental Applications," Appl. Catal., B, 125 331-49 (2012). https://doi.org/10.1016/j.apcatb.2012.05.036
  66. Y. Bessekhouad, D. Robert, and J. V. Weber, "Synthesis of Photocatalytic $TiO_2$ Nanoparticles: Optimization of the Preparation Conditions," J. Photochem. Photobiol., A, 157 [1] 47-53 (2003). https://doi.org/10.1016/S1010-6030(03)00077-7
  67. K. D. Kim and H. T. Kim, "Synthesis of $TiO_2$ Nanoparticles by Hydrolysis of TEOT and Decrease of Particle Size Using a Two-Stage Mixed Method," Powder Technolo., 119 [2-3] 164-72 (2001). https://doi.org/10.1016/S0032-5910(00)00420-4
  68. I. Kuznetsova, V. Blaskov, I. Stambolova, L. Znaidi, and A. Kanaev, "$TiO_2$ Pure Phase Brookite with Preferred Orientation, Synthesized as a Spin-Coated Film," Mater. Lett., 59 [29-30] 3820-23 (2005). https://doi.org/10.1016/j.matlet.2005.07.019
  69. J. H. Lee and Y. S. Yang, "Effect of HCl Concentration and Reaction Time on the Change in the Crystalline State of $TiO_2$ Prepared from Aqueous $TiCl_4$ Solution by Precipitation," J. Eur. Ceram. Soc., 25 [16] 3573-78 (2005). https://doi.org/10.1016/j.jeurceramsoc.2004.09.024
  70. P. Liu, J. Bandara, Y. Lin, D. Elgin, L. F. Allard, and Y.-P. Sun, "Formation of Nanocrystalline Titanium Dioxide in Perfluorinated Ionomer Membrane," Langmuir, 18 [26] 10398-401 (2002). https://doi.org/10.1021/la020462l
  71. S. Seifried, M. Winterer, and H. Hahn, "Nanocrystalline Titania Films and Particles by Chemical Vapor Synthesis," Chem. Vap. Deposition, 6 [5] 239-44 (2000). https://doi.org/10.1002/1521-3862(200010)6:5<239::AID-CVDE239>3.0.CO;2-Q
  72. J. Ayllon, A. Figueras, S. Garelik, L. Spirkova, J. Durand, and L. Cot, "Preparation of $TiO_2$ Powder Using Titanium Tetraisopropoxide Decomposition in a Plasma Enhanced Chemical Vapor Deposition (PECVD) Reactor," J. Mater. Sci. Lett., 18 [16] 1319-21 (1999). https://doi.org/10.1023/A:1006657510154
  73. H. D. Jang and S.-K. Kim, "Controlled Synthesis of Titanium Dioxide Nanoparticles in a Modified Diffusion Flame Reactor," Mater. Res. Bull., 36 [3-4] 627-37 (2001). https://doi.org/10.1016/S0025-5408(01)00552-9
  74. J.-J. Wu and C.-C. Yu, "Aligned $TiO_2$ Nanorods and Nanowalls," J. Phys. Chem. B, 108 [11] 3377-79 (2004). https://doi.org/10.1021/jp0361935
  75. J.-M. Wu, H. C. Shih, and W.-T. Wu, "Electron Field Emission from Single Crystalline $TiO_2$ Nanowires Prepared by Thermal Evaporation," Chem. Phys. Lett., 413 [4-6] 490-94 (2005). https://doi.org/10.1016/j.cplett.2005.07.113
  76. J.-M. Wu, H. C. Shih, W.-T. Wu, Y.-K. Tseng, and I.-C. Chen, "Thermal Evaporation Growth and the Luminescence Property of $TiO_2$ Nanowires," J. Cryst. Growth, 281 [2-4] 384-90 (2005). https://doi.org/10.1016/j.jcrysgro.2005.04.018
  77. B. Xiang, Y. Zhang, Z. Wang, X. Luo, Y. Zhu, H. Zhang, and D. Yu, "Field-Emission Properties of $TiO_2$ Nanowire Arrays," J. Phys. D: Appl. Phys., 38 [8] 1152 (2005). https://doi.org/10.1088/0022-3727/38/8/009
  78. M. Ayers and A. Hunt, "Titanium Oxide Aerogels Prepared from Titanium Metal and Hydrogen Peroxide," Mater. Lett., 34 [3-6] 290-93 (1998). https://doi.org/10.1016/S0167-577X(97)00181-X
  79. L. Campbell, B. Na, and E. Ko, "Synthesis and Characterization of Titania Aerogels," Chem. Mater., 4 [6] 1329-33 (1992). https://doi.org/10.1021/cm00024a037
  80. S.-S. Hong, M. S. Lee, S. S. Park, and G.-D. Lee, "Synthesis of Nanosized $TiO_2/SiO_2$ Particles in the Microemulsion and their Photocatalytic Activity on the Decomposition of p-Nitrophenol," Catal. Today, 87 [1-4] 99-105 (2003). https://doi.org/10.1016/j.cattod.2003.10.012
  81. K. D. Kim, S. H. Kim, and H. T. Kim, "Applying the Taguchi Method to the Optimization for the Synthesis of $TiO_2$ Nanoparticles by Hydrolysis of TEOT in Micelles," Colloids Surf., A, 254 [1-3] 99-105 (2005). https://doi.org/10.1016/j.colsurfa.2004.11.033
  82. A. Ali and W.-C. Oh, "Preparation of $Ag_2Se$-Graphene-$TiO_2$ Nanocomposite and its Photocatalytic Degradation (Rh B)," J. Korean Ceram. Soc., 54 [5] 388-94 (2017). https://doi.org/10.4191/kcers.2017.54.5.03
  83. Z. Li, H. Yang, F. Wu, J. Fu, L. Wang, and W. Yang, "Single-Crystalline Self-Branched Anatase Titania Nanowires for Dye-Sensitized Solar Cells," Electron. Mater. Lett., 13 [2] 174-78 (2017). https://doi.org/10.1007/s13391-017-6249-8
  84. Y. Lin, G. Wu, X. Yuan, T. Xie, and L. Zhang, "Fabrication and Optical Properties of $TiO_2$ Nanowire Arrays Made by Sol-Gel Electrophoresis Deposition into Anodic Alumina Membranes," J. Phys.: Condens. Matter., 15 [17] 2917-22 (2003). https://doi.org/10.1088/0953-8984/15/17/339
  85. S. Lee, C. Jeon, and Y. Park, "Fabrication of $TiO_2$ Tubules by Template Synthesis and Hydrolysis with Water Vapor," Chem. Mater., 16 [22] 4292-95 (2004). https://doi.org/10.1021/cm049466x
  86. S. Liu, L. Gan, L. Liu, W. Zhang, and H. Zeng, "Synthesis of Single-Crystalline $TiO_2$ Nanotubes," Chem. Mater., 14 [3] 1391-97 (2002). https://doi.org/10.1021/cm0115057
  87. J. Qiu, W. Yu, X. Gao, and X. Li, "Sol-Gel Assisted ZnO Nanorod Array Template to Synthesize $TiO_2$ Nanotube Arrays," Nanotechnology, 17 [18] 4695 (2006). https://doi.org/10.1088/0957-4484/17/18/028
  88. D. M. Andoshe, S. Choi, Y.-S. Shim, S. H. Lee, Y. Kim, C. W. Moon, D. H. Kim, S. Y. Lee, T. Kim, and H. K. Park, "A Wafer-Scale Antireflective Protection Layer of Solution-Processed $TiO_2$ Nanorods for High Performance Silicon-Based Water Splitting Photocathodes," J. Mater. Chem. A, 4 [24] 9477-85 (2016). https://doi.org/10.1039/C6TA02987F
  89. Y. Chung, W. Lo, and G. Somorjai, "Low Energy Electron Diffraction and Electron Spectroscopy Studies of the Clean (110) and (100) Titanium Dioxide (Rutile) Crystal Surfaces," Surf. Sci., 64 [2] 588-602 (1977). https://doi.org/10.1016/0039-6028(77)90064-4
  90. M. Ramamoorthy, D. Vanderbilt, and R. King-Smith, "First-Principles Calculations of the Energetics of Stoichiometric $TiO_2$ Surfaces," Phys. Rev. B, 49 [23] 16721 (1994). https://doi.org/10.1103/PhysRevB.49.16721
  91. A. Barnard and L. Curtiss, "Prediction of Stoichiometric Nanoparticle Phase and Shape Transitions Controlled by Surface Chemistry," Nano Lett., 5 [7] 1261-66 (2005). https://doi.org/10.1021/nl050355m
  92. I. S. Cho, Z. Chen, A. J. Forman, D. R. Kim, P. M. Rao, T. F. Jaramillo, and X. Zheng, "Branched $TiO_2$ Nanorods for Photoelectrochemical Hydrogen Production," Nano Lett., 11 [11] 4978-84 (2011). https://doi.org/10.1021/nl2029392
  93. F. Su, T. Wang, R. Lv, J. Zhang, P. Zhang, J. Lu, and J. Gong, "Dendritic Au/$TiO_2$ Nanorod Arrays for Visible-Light Driven Photoelectrochemical Water splitting," Nanoscale, 5 [19] 9001-9 (2013). https://doi.org/10.1039/c3nr02766j
  94. H. Qi, J. Wolfe, D. Fichou, and Z. Chen, "$Cu_2O$ Photocathode for Low Bias Photoelectrochemical Water Splitting Enabled by NiFe-Layered Double Hydroxide Co-Catalyst," Sci. Rep., 6 30882 (2016). https://doi.org/10.1038/srep30882
  95. Y. Yang, D. Xu, Q. Wu, and P. Diao, "$Cu_2O$/CuO Bilayered Composite as a High-Efficiency Photocathode for Photoelectrochemical Hydrogen Evolution Reaction," Sci. Rep., 6 35158 (2016). https://doi.org/10.1038/srep35158
  96. H. Gerischer, "On the Stability of Semiconductor Electrodes against Photodecomposition," J. Electroanal. Chem. Interfacial Electrochem., 82 [1-2] 133-43 (1977). https://doi.org/10.1016/S0022-0728(77)80253-2
  97. A. Paracchino, V. Laporte, K. Sivula, M. Gratzel, E. Thimsen, "Highly Active Oxide Photocathode for Photoelectrochemical Water Reduction," Nat. Mater., 10 [6] 456 (2011). https://doi.org/10.1038/nmat3017
  98. S. Emin, F. Abdi, M. Fanetti, W. Peng, W. Smith, K. Sivula, B. Dam, and M. Valant, "A Novel Approach for the Preparation of Textured CuO Thin Films from Electrodeposited CuCl and CuBr," J. Electroanal. Chem., 717 243-49 (2014).
  99. C.-Y. Chiang, Y. Shin, K. Aroh, and S. Ehrman, "Copper Oxide Photocathodes Prepared by a Solution Based Process," Int. J. Hydrogen Energy, 37 [10] 8232-39 (2012). https://doi.org/10.1016/j.ijhydene.2012.02.049
  100. A. C. Cardiel, K. J. McDonald, and K.-S. Choi, "Electro- chemical Growth of Copper Hydroxy Double Salt Films and Their Conversion to Nanostructured p-Type CuO Photocathodes," Langmuir, 33 [37] 9262-70 (2017). https://doi.org/10.1021/acs.langmuir.7b00588
  101. C. G. Read, Y. Park, and K.-S. Choi, "Electrochemical Synthesis of p-type $CuFeO_2$ Electrodes for Use in a Photoelectrochemical Cell," J. Phys. Chem. Lett., 3 [14] 1872-76 (2012). https://doi.org/10.1021/jz300709t
  102. N. T. Hahn, V. C. Holmberg, B. A. Korgel, and C. B. Mullins, "Electrochemical Synthesis and Characterization of p-$CuBi_2O_4$ Thin Film Photocathodes," J. Phys. Chem. C, 116 [10] 6459-66 (2012). https://doi.org/10.1021/jp210130v
  103. G. P. Wheeler and K.-S. Choi, "Photoelectrochemical Properties and Stability of Nanoporous p-Type $LaFeO_3$ Photoelectrodes Prepared by Electrodeposition," ACS Energy Lett., 2 [10] 2378-82 (2017). https://doi.org/10.1021/acsenergylett.7b00642
  104. J. Y. Kim, G. Magesh, D. H. Youn, J. W. Jang, J. Kubota, K. Domen, and J. S. Lee, "Single-Crystalline, Wormlike Hematite Photoanodes for Efficient Solar Water Splitting," Sci. Rep., 3 2681 (2013). https://doi.org/10.1038/srep02681
  105. W. Cheng, J. He, Z. Sun, Y. Peng, T. Yao, Q. Liu, Y. Jiang, F. Hu, Z. Xie, B. He, and S. Wei, "Ni-Doped Overlayer Hematite Nanotube: A Highly Photoactive Architecture for Utilization of Visible Light," J. Phys. Chem. C, 116 [45] 24060-67 (2012). https://doi.org/10.1021/jp306738e
  106. J. M. Jeon, T. L. Kim, Y. S. Shim, Y. R. Choi, S. Lee, K. C. Kwon, S. H. Hong, Y. W. Kim, S. Y. Kim, M. Kim, and H. W. Jang, "Microscopic Evidence for Strong Interaction between Pd and Graphene Oxide that Results in Metal-Decoration-Induced Reduction of Graphene Oxide," Adv. Mater., 29 [45] 1605929 (2017). https://doi.org/10.1002/adma.201605929

Cited by

  1. 배터리 소재를 이용한 전이금속 화합물 기반 물 분해 촉매 개발 vol.21, pp.4, 2018, https://doi.org/10.31613/ceramist.2018.21.4.09
  2. Evaluation of dual layered photoanode for enhancement of visible-light-driven applications vol.9, pp.29, 2018, https://doi.org/10.1039/c9ra02074h
  3. A methodological review on material growth and synthesis of solar-driven water splitting photoelectrochemical cells vol.9, pp.52, 2018, https://doi.org/10.1039/c9ra05341g
  4. Influence of C3N4 Precursors on Photoelectrochemical Behavior of TiO2/C3N4 Photoanode for Solar Water Oxidation vol.13, pp.4, 2018, https://doi.org/10.3390/en13040974
  5. All-Solution-Processed BiVO4/TiO2 Photoanode with NiCo2O4 Nanofiber Cocatalyst for Enhanced Solar Water Oxidation vol.3, pp.6, 2018, https://doi.org/10.1021/acsaem.0c00607
  6. Fabrication and photoelectrochemical activity of hierarchically Porous TiO2-ZnO heterojunction film vol.55, pp.26, 2020, https://doi.org/10.1007/s10853-020-04858-2
  7. Artificial Photosynthesis for Value-Added Chemicals Production vol.23, pp.4, 2018, https://doi.org/10.31613/ceramist.2020.23.4.01
  8. Visible-Light-Responsive Oxyhalide PbBiO2Cl Photoelectrode: On-Site Flux Synthesis on a Fluorine-Doped Tin Oxide Electrode vol.13, pp.4, 2018, https://doi.org/10.1021/acsami.0c14964
  9. Photocatalytic degradation of methylene blue using novel flower-like zirconium bismuth molybdate thin film, grown by temperature-assisted CBD method vol.32, pp.17, 2018, https://doi.org/10.1007/s10854-021-06664-1
  10. The kinetics of metal oxide photoanodes from charge generation to catalysis vol.6, pp.12, 2018, https://doi.org/10.1038/s41578-021-00343-7
  11. Stable and Efficient Photoelectrochemical Water Splitting of GaN Nanowire Photoanode Coated with Au Nanoparticles by Hot-Electron-Assisted Transport vol.4, pp.12, 2021, https://doi.org/10.1021/acsaem.1c02486
  12. Predominantly enhanced catalytic activities of surface protected ZnO nanorods integrated stainless-steel mesh structures: A synergistic impact on oxygen evolution reaction process vol.429, pp.None, 2018, https://doi.org/10.1016/j.cej.2021.132360