References
- H. Kim, A. A. Abdala, and C. W. Macosko, "Graphene/ Polymer Nanocomposites," Macromolecules, 43 [16] 6515-30 (2010). https://doi.org/10.1021/ma100572e
- R. J. Young, I. A. Kinloch, L. Gong, and K. S. Novoselov, "The Mechanics of Graphene nanocomposites: A Review," Compos. Sci. Technol., 72 [12] 1459-76 (2012). https://doi.org/10.1016/j.compscitech.2012.05.005
- J. S. Bunch, A. M. van der Zande, S. S. Verbridge, I. W. Frank, D. M. Tanenbaum, J. M. Parpia, H. G. Craighead, and P. L. McEuen, "Electromechanical Resonators from Graphene Sheets," Science, 315 [5811] 490-93 (2007). https://doi.org/10.1126/science.1136836
- M. J. Allen, V. C. Tung, and R. B. Kaner, "Honeycomb Carbon: A Review of Graphene," Chem. Rev., 110 [1] 132-45 (2010). https://doi.org/10.1021/cr900070d
- A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, "The Electronic Properties of Graphene," Rev. Mod. Phys., 81 109-62 (2009). https://doi.org/10.1103/RevModPhys.81.109
- F. Schwierz, "Graphene Transistors," Nat. Nanotechnol., 5 487-96 (2010). https://doi.org/10.1038/nnano.2010.89
- F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, "Graphene Photonics and Optoelectronics," Nat. Photonics, 4 611-22 (2010). https://doi.org/10.1038/nphoton.2010.186
- D. A. C. Brownson, D. K. Kampouris, and C. E. Banks, "An Overview of Graphene in Energy Production and Storage Applications," J. Power Sources, 196 [11] 4873-85 (2011). https://doi.org/10.1016/j.jpowsour.2011.02.022
- S. Park and R. S. Ruoff, "Chemical Methods for the Production of Graphenes," Nat. Nanotechnol., 4 [4] 217-24 (2009). https://doi.org/10.1038/nnano.2009.58
- S. P. Pang, J. M. Englert, H. N. Tsao, Y. Hernandez, A. Hirsch, X. L. Feng, and K. Mullen, "Extrinsic Corrugation-Assisted Mechanical Exfoliation of Monolayer Graphene," Adv. Mater., 22 [47] 5374-77 (2010). https://doi.org/10.1002/adma.201002872
- T. L. Yoon, T. L. Lim, T. K. Min, S. H. Hung, N. Jakse, and S. K. Lai, "Epitaxial Growth of Graphene on 6H-Silicon Carbide Substrate by Simulated Annealing Method," J. Chem. Phys., 139 [20] 204702 (2013). https://doi.org/10.1063/1.4832043
- S. W. Poon, W. Chen, E. S. Tok, and A. T. S. Wee, "Probing Epitaxial Growth of Graphene on Silicon Carbide by Metal Decoration," Appl. Phys. Lett., 92 [10] 104102 (2008). https://doi.org/10.1063/1.2883941
- W.S. Kim, S. Y. Moon, N. H. Park, H. Huh, K. B. Shim, and H. Ham, "Electrical and Structural Feature of Monolayer Graphene Produced by Pulse Current Unzipping and Microwave Exfoliation of Carbon Nanotubes," Chem. Mater., 23 [4] 940-44 (2011). https://doi.org/10.1021/cm1020349
- A. Sinitskii, A. A. Fursina, D. V. Kosynkin, A. L. Higginbotham, D. Natelson, and J. M. Tour, "Electronic Transport in Monolayer Graphene Nanoribbons Produced by Chemical Unzipping of Carbon Nanotubes," Appl. Phys. Lett., 95 [25] 253108 (2009). https://doi.org/10.1063/1.3276912
- T. Ciuk, P. Caban, and W. Strupinski, "Charge Carrier Concentration and Offset Voltage in Quasi-Free-Standing Monolayer Chemical Vapor Deposition Graphene on SiC," Carbon, 101 431-38 (2016). https://doi.org/10.1016/j.carbon.2016.01.093
- M. S. Rosmi, S. M. Shinde, N. D. A. Rahman, A. Thangaraja, S. Sharma, K. P. Sharma, Y. Yaakob, R. K. Vishwakarma, S. A. Bakar, G. Kalita, H. Ohtani, and M. Tanemura, "Synthesis of Uniform Monolayer Graphene on Re-Solidified Copper from Waste Chicken Fat by Low Pressure Chemical Vapor Deposition," Mater. Res. Bull., 83 573-80 (2016). https://doi.org/10.1016/j.materresbull.2016.07.010
- J. W. Suk, W. H. Lee, T. J. Kang, and R. D. Piner, "Transfer of Chemical Vapor Deposition-Grown Monolayer Graphene by Alkane Hydrocarbon," Sci. Adv. Mater., 8 [1] 144-47 (2016). https://doi.org/10.1166/sam.2016.2618
-
H. J. Tan, Y. Fan, Y. M. Rong, B. Porter, C. S. Lau, Y. Q. Zhou, Z. Y. He, S. S. Wang, H. Bhaskaran, and J. H. Warner, "Doping Graphene Transistors Using Vertical Stacked Monolayer
$WS_2$ Heterostructures Grown by Chemical Vapor Deposition," ACS Appl. Mater. Interfaces, 8 [3] 1644-52 (2016). https://doi.org/10.1021/acsami.5b08295 - C. Zhao, B. Deng, G. C. Chen, B. Lei, H. Hua, H. L. Peng, and Z. M. Yan, "Large-Area Chemical Vapor Deposition-Grown Monolayer Graphene-Wrapped Silver Nanowires for Broad-Spectrum and Robust Antimicrobial Coating," Nano Res., 9 [4] 963-73 (2016). https://doi.org/10.1007/s12274-016-0984-2
-
C. C. Chen, C. H. Yeh, C. C. Chang, and J. J. Ho, "Conversion of
$CO_2$ and$C_2H_6$ to Propanoic Acid on an Iridium- Modified Graphene Oxide Surface: Quantum-Chemical Investigation," Ind. Eng. Chem. Res., 54 [5] 1539-46 (2015). https://doi.org/10.1021/ie503982t - Z. Y. Jiang and L. F. Yan, "Conversion of Glucose to Valuable Platform Chemicals over Graphene Solid Acid Catayst," Chin. J. Chem. Phys., 28 [2] 230-34 (2015). https://doi.org/10.1063/1674-0068/28/cjcp1412211
- B. S. Shen, J. J. Ding, X. B. Yan, W. J. Feng, J. Li, and Q. J. Xue, "Influence of Different Buffer Gases on Synthesis of Few-Layered Graphene by Arc Discharge Method," Appl. Surf. Sci., 258 [10] 4523-31 (2012). https://doi.org/10.1016/j.apsusc.2012.01.019
- Y. P. Wu, B. Wang, Y. F. Ma, Y. Huang, N. Li, F. Zhang, and Y. S. Chen, "Efficient and Large-Scale Synthesis of Few-Layered Graphene Using an Arc-Discharge Method and Conductivity Studies of the Resulting Films," Nano Res., 3 [9] 661-69 (2010). https://doi.org/10.1007/s12274-010-0027-3
- N. Li, Z. Y. Wang, K. K. Zhao, Z. J. Shi, Z. N. Gu, and S. K. Xu, "Large Scale Synthesis of N-Doped Multi-Layered Graphene Sheets by Simple Arc-Discharge Method," Carbon, 48 [1] 255-59 (2010). https://doi.org/10.1016/j.carbon.2009.09.013
-
Y. X. Zhang, X. He, G. M. Zeng, T. Chen, Z. Y. Zhou, H. T. Wang, and W. J. Lu, "Enhanced Photodegradation of Pentachlorophenol by Single and Mixed Nonionic and Anionic Surfactants Using Graphene-
$TiO_2$ as Catalyst," Environ. Sci. Pollut. Res. Int., 22 [22] 18211-20 (2015). https://doi.org/10.1007/s11356-015-4785-z - A. K. Geim and K. S. Novoselov, "The Rise of Graphene," Nat. Mater., 6 183-91 (2007). https://doi.org/10.1038/nmat1849
- C.-Y. Su, A.-Y. Lu, Y. Xu, F.-R. Chen, A. N. Khlobystov, and L.-J. Li, "High-Quality Thin Graphene Films from Fast Electrochemical Exfoliation," ACS Nano, 5 [3] 2332-39 (2011). https://doi.org/10.1021/nn200025p
- Y. Hernandez, V. Nicolosi, M. Lotya, F. M. Blighe, Z. Sun, S. De, I. McGovern, B. Holland, M. Byrne, Y. K. Gun'Ko, J. J. Boland, P. Niraj, G. Duesberg, S. Krishnamurthy, R. Goodhue, J. Hutchison, V. Scardaci, A. C. Ferrari, and J. N. Coleman, "High-Yield Production of Graphene by Liquid-Phase Exfoliation of Graphite," Nat. Nano., 3 563-68 (2008). https://doi.org/10.1038/nnano.2008.215
- P. W. Sutter, J.-I. Flege, and E. A. Sutter, "Epitaxial Graphene on Ruthenium," Nat. Mater., 7 406-11 (2008). https://doi.org/10.1038/nmat2166
- C. Berger, Z. Song, X. Li, X. Wu, N. Brown, C. Naud, D. Mayou, T. Li, J. Hass, and A. N. Marchenkov, "Electronic Confinement and Coherence in Patterned Epitaxial Graphene," Science, 312 [5777] 1191-96 (2006). https://doi.org/10.1126/science.1125925
- K. V. Emtsev, F. Speck, T. Seyller, L. Ley, and J. D. Riley, "Interaction, Growth, and Ordering of Epitaxial Graphene on SiC {0001} Surfaces: A Comparative Photoelectron Spectroscopy Study," Phys. Rev. B, 77 155303 (2008). https://doi.org/10.1103/PhysRevB.77.155303
- J. Hass, W. A. D. Heer, and E. H. Conrad, "The Growth and Morphology of Epitaxial Multilayer Graphene," J. Phys.: Condens. Matter, 20 323202 (2008). https://doi.org/10.1088/0953-8984/20/32/323202
- C.-Y. Su, Y. Xu, W. Zhang, J. Zhao, A. Liu, X. Tang, C.-H. Tsai, Y. Huang, and L.-J. Li, "Highly Efficient Restoration of Graphitic Structure in Graphene Oxide Using Alcohol Vapors," ACS Nano, 4 [9] 5285-92 (2010). https://doi.org/10.1021/nn101691m
-
G. Williams, B. Seger, and P. V. Kamat, "
$TiO_2$ -Graphene Nanocomposites. UV-Assisted Photocatalytic Reduction of Graphene Oxide," ACS Nano, 2 [7] 1487-91 (2008). https://doi.org/10.1021/nn800251f - A. A. Green and M. C. Hersam, "Solution Phase Production of Graphene with Controlled Thickness via Density Differentiation," Nano Lett., 9 [12] 4031-36 (2009).
- L. J. Cote, F. Kim, and J. Huang, "Langmuir-Blodgett Assembly of Graphite Oxide Single Layers," J. Am. Chem. Soc., 131 [3] 1043-49 (2008). https://doi.org/10.1021/ja806262m
- D. Li, M. B. Muller, S. Gilje, R. B. Kaner, and G. G. Wallace, "Processable Aqueous Dispersions of Graphene Nanosheets," Nat. Nanotechnol., 3 101-5 (2008). https://doi.org/10.1038/nnano.2007.451
- W. Gao, L.B. Alemany, L. Ci, and P. M. Ajayan, "New Insights into the Structure and Reduction of Graphite Oxide," Nat. Chem., 1 403-8 (2009). https://doi.org/10.1038/nchem.281
- K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J.-H. Ahn, P. Kim, J.-Y. Choi, and B. H. Hong, "Large-Scale Pattern Growth of Graphene Films for Stretchable Transparent Electrodes," Nature, 457 706-10 (2009). https://doi.org/10.1038/nature07719
- J. Coraux, A.T. N 'Diaye, C. Busse, and T. Michely, "Structural Coherency of Graphene on Ir(111)," Nano Lett., 8 [2] 565-70 (2008). https://doi.org/10.1021/nl0728874
- S. Bae, H. Kim, Y. Lee, X. F. Xu, J. S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, Y. I. Song, Y. J. Kim, K. S. Kim, B. Ozyilmaz, J. H. Ahn, B. H. Hong, and S. Iijima, "Roll-to-Roll Production of 30-Inch Graphene Films for Transparent Electrodes," Nat. Nanotechnol., 5 [8] 574-78 (2010). https://doi.org/10.1038/nnano.2010.132
- A. Reina, X. Jia, J. Ho, D. Nezich, H. Son, V. Bulovic, M. S. Dresselhaus, and J. Kong, "Large Area, Few-Layer Graphene Films on Arbitrary Substrates by Chemical Vapor Deposition," Nano Lett., 9 [1] 30-5 (2008). https://doi.org/10.1021/nl801827v
- X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, and E. Tutuc, "Large-Area Synthesis of High-Quality and Uniform Graphene Films on Copper Foils," Science, 324 [5932] 1312-14 (2009). https://doi.org/10.1126/science.1171245
- S. Lee, K. Lee, and Z. Zhong, "Wafer Scale Homogeneous Bilayer Graphene Films by Chemical Vapor Deposition," Nano Lett., 10 [11] 4702-7 (2010). https://doi.org/10.1021/nl1029978
- K. Yan, H. Peng, Y. Zhou, H. Li, and Z. Liu, "Formation of Bilayer Bernal Graphene: Layer-by-Layer Epitaxy via Chemical Vapor Deposition," Nano Lett., 11 [3] 1106-10 (2011). https://doi.org/10.1021/nl104000b
- Z. Sun, Z. Yan, J. Yao, E. Beitler, Y. Zhu, and J. M. Tour, "Growth of Graphene from Solid Carbon Sources," Nature, 468 549-52 (2010). https://doi.org/10.1038/nature09579
- K. Kim, J.-Y. Choi, T. Kim, S.-H. Cho, and H.-J. Chung, "A Role for Graphene in Silicon-Based Semiconductor Devices," Nature, 479 338-44 (2011). https://doi.org/10.1038/nature10680
- Z. Yan, Z. Peng, and J. M. Tour, "Chemical Vapor Deposition of Graphene Single Crystals," Acc. Chem. Res., 47 [4] 1327-37 (2014). https://doi.org/10.1021/ar4003043
- J. Sun, S. Deng, W. Guo, Z. Zhan, J. Deng, C. Xu, X. Fan, K. Xu, W. Guo, and Y. Huang, "Electrochemical Bubbling Transfer of Graphene Using a Polymer Support with Encapsulated Air Gap as Permeation Stopping Layer," J. Nanomater., 2016 51 (2016).
- C. T. Cherian, F. Giustiniano, I. Martin-Fernandez, H. Andersen, J. Balakrishnan, and B. Ozyilmaz, "'Bubble- Free' Electrochemical Delamination of CVD Graphene Films," Small, 11 [2] 189-94 (2015). https://doi.org/10.1002/smll.201402024
- D. Mafra, T. Ming, and J. Kong, "Facile Graphene Transfer Directly to Target Substrates with a Reusable Metal Catalyst," Nanoscale, 7 [36] 14807-12 (2015). https://doi.org/10.1039/C5NR03892H
- Y. Wang, Y. Zheng, X. Xu, E. Dubuisson, Q. Bao, J. Lu, and K. P. Loh, "Electrochemical Delamination of CVD-Grown Graphene Film: toward the Recyclable Use of Copper Catalyst," ACS Nano, 5 [12] 9927-33 (2011). https://doi.org/10.1021/nn203700w
- Y. Chen, X. L. Gong, and J. G. Gai, "Progress and Challenges in Transfer of Large-Area Graphene Films," Adv. Sci., 3 [8] 1500343 (2016). https://doi.org/10.1002/advs.201500343
- H. Terrones, R. Lv, M. Terrones, and M. S. Dresselhaus, "The Role of Defects and Doping in 2D Graphene Sheets and 1D Nanoribbons," Rep. Prog. Phys., 75 [6] 062501 (2012). https://doi.org/10.1088/0034-4885/75/6/062501
- R. Steingruber, M. Ferstl, and W. Pilz, "Micro-Optical Elements Fabricated by Electron-Beam Lithography and Dry Etching Technique Using Top Conductive Coatings," Microelectron. Eng., 57 285-89 (2001).
- T. Jiao, J. Liu, D. Wei, Y. Feng, X. Song, H. Shi, S. Jia, W. Sun, and C. Du, "Composite Transparent Electrode of Graphene Nanowalls and Silver Nanowires on Micropyramidal Si for High-Efficiency Schottky Junction Solar Cells," ACS Appl. Mater. Interfaces, 7 [36] 20179-83 (2015). https://doi.org/10.1021/acsami.5b05565
- X. Song, T. Sun, J. Yang, L. Yu, D. Wei, L. Fang, B. Lu, C. Du, and D. Wei, "Direct Growth of Graphene Films on 3D Grating Structural Quartz Substrates for High-Performance Pressure-Sensitive Sensors," ACS Appl. Mater. Interfaces, 8 [26] 16869-75 (2016). https://doi.org/10.1021/acsami.6b04526
- S. C. Mannsfeld, B. C. Tee, R. M. Stoltenberg, C. V. H. Chen, S. Barman, B. V. Muir, A. N. Sokolov, C. Reese, and Z. Bao, "Highly Sensitive Flexible Pressure Sensors with Microstructured Rubber Dielectric Layers," Nat. Mater., 9 859-64 (2010). https://doi.org/10.1038/nmat2834
- H. Ago, Y. Ogawa, M. Tsuji, S. Mizuno, and H. Hibino, "Catalytic Growth of Graphene: Toward Large-Area Single-Crystalline Graphene," J. Phys. Chem. Lett., 3 [16] 2228-36 (2012). https://doi.org/10.1021/jz3007029
- X. S. Li, W. W. Cai, J. H. An, S. Kim, J. Nah, D. X. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo, and R. S. Ruoff, "Large-Area Synthesis of High-Quality and Uniform Graphene Films on Copper Foils," Science, 324 [5932] 1312-14 (2009). https://doi.org/10.1126/science.1171245
- X. S. Li, C. W. Magnuson, A. Venugopal, R. M. Tromp, J. B. Hannon, E. M. Vogel, L. Colombo, and R. S. Ruoff, "Large-Area Graphene Single Crystals Grown by Low-Pressure Chemical Vapor Deposition of Methane on Copper," J. Am. Chem. Soc., 133 [9] 2816-19 (2011). https://doi.org/10.1021/ja109793s
- X. C. Dong, P. Wang, W. J. Fang, C. Y. Su, Y. H. Chen, L. J. Li, W. Huang, and P. Chen, "Growth of Large-Sized Graphene Thin-Films by Liquid Precursor-Based Chemical Vapor Deposition under Atmospheric Pressure," Carbon, 49 [11] 3672-78 (2011). https://doi.org/10.1016/j.carbon.2011.04.069
- A. Guermoune, T. Chari, F. Popescu, S. S. Sabri, J. Guillemette, H. S. Skulason, T. Szkopek, and M. Siaj, "Chemical Vapor Deposition Synthesis of Graphene on Copper with Methanol, Ethanol, and Propanol Precursors," Carbon, 49 [13] 4204-10 (2011). https://doi.org/10.1016/j.carbon.2011.05.054
- A. Srivastava, C. Galande, L. Ci, L. Song, C. Rai, D. Jariwala, K. F. Kelly, and P. M. Ajayan, "Novel Liquid Precursor-Based Facile Synthesis of Large-Area Continuous, Single, and Few-Layer Graphene Films," Chem. Mater., 22 [11] 3457-61 (2010). https://doi.org/10.1021/cm101027c
- Y. G. Yao, Z. Li, Z. Y. Lin, K. S. Moon, J. Agar, and C. P. Wong, "Controlled Growth of Multilayer, Few-Layer, and Single-Layer Graphene on Metal Substrates," J. Phys. Chem. C, 115 [13] 5232-38 (2011). https://doi.org/10.1021/jp109002p
- Z. C. Li, P. Wu, C. X. Wang, X. D. Fan, W. H. Zhang, X. F. Zhai, C. G. Zeng, Z. Y. Li, J. L. Yang, and J. G. Hou, "Low-Temperature Growth of Graphene by Chemical Vapor Deposition Using Solid and Liquid Carbon Sources," ACS Nano, 5 [4] 3385-90 (2011). https://doi.org/10.1021/nn200854p
- M. H. Rummeli, A. Bachmatiuk, A. Scott, F. Borrnert, J. H. Warner, V. Hoffman, J.-H. Lin, G. Cuniberti, and B. Buchner, "Direct Low-Temperature Nanographene CVD Synthesis over a Dielectric Insulator," ACS Nano, 4 [7] 4206-10 (2010). https://doi.org/10.1021/nn100971s
- L. Zhang, Z. Shi, Y. Wang, R. Yang, D. Shi, and G. Zhang, "Catalyst-Free Growth of Nanographene Films on Various Substrates," Nano Res., 4 [3] 315-21 (2011). https://doi.org/10.1007/s12274-010-0086-5
- J. Chen, Y. Wen, Y. Guo, B. Wu, L. Huang, Y. Xue, D. Geng, D. Wang, G. Yu, and Y. Liu, "Oxygen-Aided Synthesis of Polycrystalline Graphene on Silicon Dioxide Substrates," J. Am. Chem. Soc., 133 [4] 17548-51 (2011). https://doi.org/10.1021/ja2063633
- H. J. Shin, W. M. Choi, S. M. Yoon, G. H. Han, Y. S. Woo, E. S. Kim, S. J. Chae, X. S. Li, A. Benayad, D. D. Loc, F. Gunes, Y. H. Lee, and J. Y. Choi, "Transfer-Free Growth of Few-Layer Graphene by Self-Assembled Monolayers," Adv. Mater., 23 [38] 4392-97 (2011). https://doi.org/10.1002/adma.201102526
- M. P. Levendorf, C. S. Ruiz-Vargas, S. Garg, and J. Park, "Transfer-Free Batch Fabrication of Single Layer Graphene Transistors," Nano Lett., 9 [12] 4479-83 (2009). https://doi.org/10.1021/nl902790r
- S.-J. Byun, H. Lim, G.-Y. Shin, T.-H. Han, S. H. Oh, J.-H. Ahn, H. C. Choi, and T.-W. Lee, "Graphenes Converted from Polymers," J. Phys. Chem. Lett., 2 [5] 493-97 (2011). https://doi.org/10.1021/jz200001g
- C. S. Lee, L. Baraton, Z. He, J.-L. Maurice, M. Chaigneau, D. Pribat, and C. S. Cojocaru, "Dual Graphene films growth process based on plasma-assisted chemical vapor deposition, in: SPIE NanoScience+ Engineering, International Society for Optics and Photonics, 2010, pp. 77610P-77610P-77617.
- X. Li, W. Cai, L. Colombo, and R. S. Ruoff, "Evolution of Graphene Growth on Ni and Cu by Carbon Isotope Labeling," Nano Lett., 9 [12] 4268-72 (2009). https://doi.org/10.1021/nl902515k
- X. Li, Y. Zhu, W. Cai, M. Borysiak, B. Han, D. Chen, R. D. Piner, L. Colombo, and R. S. Ruoff, "Transfer of Large-Area Graphene Films for High-Performance Transparent Conductive Electrodes," Nano Lett., 9 [12] 4359-63 (2009). https://doi.org/10.1021/nl902623y
- H. J. Song, M. Son, C. Park, H. Lim, M. P. Levendorf, A. W. Tsen, J. Park, and H. C. Choi, "Large Scale Metal-Free Synthesis of Graphene on Sapphire and Transfer-Free Device Fabrication," Nanoscale, 4 [10] 3050-54 (2012). https://doi.org/10.1039/c2nr30330b
- J. M. P. Alaboson, Q. H. Wang, J. D. Emery, A. L. Lipson, M. J. Bedzyk, J. W. Elam, M. J. Pellin, and M. C. Hersam, "Seeding Atomic Layer Deposition of High-k Dielectrics on Epitaxial Graphene with Organic Self-Assembled Monolayers," ACS Nano, 5 [6] 5223-32 (2011). https://doi.org/10.1021/nn201414d
- P.-Y. Teng, C.-C. Lu, K. Akiyama-Hasegawa, Y.-C. Lin, C.-H. Yeh, K. Suenaga, and P.-W. Chiu, "Remote Catalyzation for Direct Formation of Graphene Layers on Oxides," Nano Lett., 12 [3] 1379-84 (2012). https://doi.org/10.1021/nl204024k
- J. Kang, D. Shin, S. Bae, and B. H. Hong, "Graphene Transfer: Key for Applications," Nanoscale, 4 [18] 5527-37 (2012). https://doi.org/10.1039/c2nr31317k
- Y.-J. Kim, S. J. Kim, M. H. Jung, K. Y. Choi, S. Bae, S.-K. Lee, Y. Lee, D. Shin, B. Lee, H. Shin, M. Choi, K. Park, J- H Ahn, and B. H. Hong, "Low-Temperature Growth and Direct Transfer of Graphene-Graphitic Carbon Films on Flexible Plastic Substrates," Nanotechnology, 23 [34] 344016 (2012). https://doi.org/10.1088/0957-4484/23/34/344016
- H.-K. Seo, K. Kim, S.-Y. Min, Y. Lee, C. E. Park, R. Raj, and T.-W. Lee, "Direct Growth of Graphene-Dielectric Bi-Layer Structure on Device Substrates from Si-Based Polymer," 2D Mater., 4 [2] 024001 (2017). https://doi.org/10.1088/2053-1583/aa5408
- J. Yamada, Y. Ueda, T. Maruyama, and S. Naritsuka, "Direct Growth of Multilayer Graphene by Precipitation Using W Capping Layer," Jpn. J. Appl. Phys., 55 [10] 100302 (2016). https://doi.org/10.7567/JJAP.55.100302
- C.-Y. Su, A.-Y. Lu, C.-Y. Wu, Y.-T. Li, K.-K. Liu, W. Zhang, S.-Y. Lin, Z.-Y. Juang, Y.-L. Zhong, and F.-R. Chen, "Direct Formation of Wafer Scale Graphene Thin Layers on Insulating Substrates by Chemical Vapor Deposition," Nano Lett., 11 [9] 3612-16 (2011). https://doi.org/10.1021/nl201362n
- Z. Peng, Z. Yan, Z. Sun, and J. M. Tour, "Direct Growth of Bilayer Graphene on SiO2 Substrates by Carbon Diffusion through Nickel," ACS Nano, 5 [10] 8241-47 (2011). https://doi.org/10.1021/nn202923y
- M. Min, S. Seo, Y. Yoon, K. Cho, S. M. Lee, T. Lee, and H. Lee, "Catalyst-Free Bottom-Up Growth of Graphene Nanofeatures along with Molecular Templates on Dielectric Substrates," Nanoscale, 8 [38] 17022-29 (2016). https://doi.org/10.1039/C6NR05657A
- Z. Liu, L. Song, S. Zhao, J. Huang, L. Ma, J. Zhang, J. Lou, and P. M. Ajayan, "Direct Growth of Graphene/Hexagonal Boron Nitride Stacked Layers," Nano Lett., 11 [5] 2032-37 (2011). https://doi.org/10.1021/nl200464j
- P. Thanh Trung, J. Campos-Delgado, F. Joucken, J.-F. Colomer, B. Hackens, J.-P. Raskin, C. N. Santos, and S. Robert, "Direct Growth of Graphene on Si (111)," J. Appl. Phys., 115 [22] 223704 (2014). https://doi.org/10.1063/1.4882181
-
S. C. Xu, B. Y. Man, S. Z. Jiang, C. S. Chen, C. Yang, M. Liu, X. G. Gao, Z. C. Sun, and C. Zhang, "Direct Synthesis of Graphene on
$SiO_2$ Substrates by Chemical Vapor Deposition," CrystEngComm, 15 [10] 1840-44 (2013). https://doi.org/10.1039/c3ce27029g - J. Kwak, J. H. Chu, J.-K. Choi, S.-D. Park, H. Go, S. Y. Kim, K. Park, S.-D. Kim, Y.-W. Kim, and E. Yoon, "Near Room-Temperature Synthesis of Transfer-Free Graphene Films," Nat. Commun., 3 645 (2012). https://doi.org/10.1038/ncomms1650
-
H. Bi, S. Sun, F. Huang, X. Xie, and M. Jiang, "Direct Growth of Few-Layer Graphene Films on
$SiO_2$ Substrates and Their Photovoltaic Applications," J. Mater. Chem., 22 [2] 411-16 (2012). https://doi.org/10.1039/C1JM14778A -
H. Kim, I. Song, C. Park, M. Son, M. Hong, Y. Kim, J. S. Kim, H.-J. Shin, J. Baik, and H. C. Choi, "Copper-Vapor-Assisted Chemical Vapor Deposition for High-Quality and Metal-Free Single-Layer Graphene on Amorphous
$SiO_2$ Substrate," ACS Nano, 7 [8] 6575-82 (2013). https://doi.org/10.1021/nn402847w - J. Li, C. Shen, Y. Que, Y. Tian, L. Jiang, D. Bao, Y. Wang, S. Du, and H.-J. Gao, "Copper Vapor-Assisted Growth of Hexagonal Graphene Domains on Silica Islands," Appl. Phys. Lett., 109 [2] 023106 (2016). https://doi.org/10.1063/1.4958872
- S. Tang, H. Wang, H. S. Wang, Q. Sun, X. Zhang, C. Cong, H. Xie, X. Liu, X. Zhou, and F. Huang, "Silane-Catalysed Fast Growth of Large Single-Crystalline Graphene on Hexagonal Boron Nitride," Nat. Commun., 6 6499 (2015). https://doi.org/10.1038/ncomms7499
- G. Yang, H.-Y. Kim, S. Jang, and J. Kim, "Transfer-Free Growth of Multilayer Graphene Using Self-Assembled Monolayers," ACS Appl. Mater. Interfaces, 8 [40] 27115-21 (2016). https://doi.org/10.1021/acsami.6b08974
- H. Wang, Y. Zhou, D. Wu, L. Liao, S. L. Zhao, H. L. Peng, and Z. F. Liu, "Synthesis of Boron-Doped Graphene Monolayers Using the Sole Solid Feedstock by Chemical Vapor Deposition," Small, 9 [8] 1316-20 (2013). https://doi.org/10.1002/smll.201203021
- R. Mehta, S. Chugh, and Z. Chen, "Transfer-Free Multi-Layer Graphene as a Diffusion Barrier," Nanoscale, 9 [5] 1827-33 (2017). https://doi.org/10.1039/C6NR07637H
- R. Munoz, C. Munuera, J. Martínez, J. Azpeitia, C. Gomez-Aleixandre, and M. Garcia-Hernandez, "Low Temperature Metal Free Growth of Graphene on Insulating Substrates by Plasma Assisted Chemical Vapor Deposition," 2D Mater., 4 015009 (2016). https://doi.org/10.1088/2053-1583/4/1/015009
-
J. Pang, R. G. Mendes, P. S. Wrobel, M. D. Wlodarski, H. Q. Ta, L. Zhao, L. Giebeler, B. Trzebicka, T. Gemming, and L. Fu, "A Self Terminating Confinement Approach for Large Area Uniform Monolayer Graphene Directly over
$Si/SiO_x$ by Chemical Vapor Deposition," ACS Nano, 11 [2] 1946-56 (2017). https://doi.org/10.1021/acsnano.6b08069 - J. Sun, Y. Chen, M. K. Priydarshi, Z. Chen, A. Bachmatiuk, Z. Zou, Z. Chen, X. Song, Y. Gao, and M. H. Ruummeli, "Direct Chemical Vapor Deposition-Derived Graphene Glasses Targeting Wide Ranged Applications," Nano Lett., 15 [9] 5846-54 (2015). https://doi.org/10.1021/acs.nanolett.5b01936
- J.-H. Lee, M.-S. Kim, J.-Y. Lim, S.-H. Jung, S.-G. Kang, H.-J. Shin, J.-Y. Choi, S.-W. Hwang, and D. Whang, "CMOS-Compatible Catalytic Growth of Graphene on a Silicon Dioxide Substrate," Appl. Phys. Lett., 109 [5] 053102 (2016). https://doi.org/10.1063/1.4960293
- A. Ismach, C. Druzgalski, S. Penwell, A. Schwartzberg, M. Zheng, A. Javey, J. Bokor, and Y. Zhang, "Direct Chemical Vapor Deposition of Graphene on Dielectric Surfaces," Nano Lett., 10 [5] 1542-48 (2010). https://doi.org/10.1021/nl9037714
- J. Xue, J. Sanchez-Yamagishi, D. Bulmash, P. Jacquod, A. Deshpande, K. Watanabe, T. Taniguchi, P. Jarillo-Herrero, and B. J. LeRoy, "Scanning Tunnelling Microscopy and Spectroscopy of Ultra-Flat Graphene on Hexagonal Boron Nitride," Nat. Mater., 10 282-85 (2011). https://doi.org/10.1038/nmat2968
- T. Q. Trung and N.-E. Lee, "Materials and Devices for Transparent Stretchable Electronics," J. Mater. Chem. C, 5 [9] 2202-22 (2017). https://doi.org/10.1039/C6TC05346G
- T. Q. Trung and N. E. Lee, "Recent Progress on Stretchable Electronic Devices with Intrinsically Stretchable Components," Adv. Mater., 29 [3] 1603167 (2017). https://doi.org/10.1002/adma.201603167
- M. Son, H. Lim, M. Hong, and H. C. Choi, "Direct Growth of Graphene Pad on Exfoliated Hexagonal Boron Nitride Surface," Nanoscale, 3 [8] 3089-93 (2011). https://doi.org/10.1039/c1nr10504c
- Q. K. Yu, L.A. Jauregui, W. Wu, R. Colby, J. F. Tian, Z. H. Su, H. L. Cao, Z. H. Liu, D. Pandey, D. G. Wei, T. F. Chung, P. Peng, N. P. Guisinger, E. A. Stach, J. M. Bao, S. S. Pei, and Y. P. Chen, "Control and Characterization of Individual Grains and Grain Boundaries in Graphene Grown by Chemical Vapour Deposition," Nat. Mater., 10 443-49 (2011). https://doi.org/10.1038/nmat3010
- B. Zhang, W. H. Lee, R. Piner, I. Kholmanov, Y. P. Wu, H. F. Li, H. X. Ji, and R. S. Ruoff, "Low-Temperature Chemical Vapor Deposition Growth of Graphene from Toluene on Electropolished Copper Foils," ACS Nano, 6 [3] 2471-76 (2012). https://doi.org/10.1021/nn204827h
- J. Jang, M. Son, S. Chung, K. Kim, C. Cho, B. H. Lee, and M. H. Ham, "Low-Temperature-Grown Continuous Graphene Films from Benzene by Chemical Vapor Deposition at Ambient Pressure," Sci. Rep., 5 17955 (2015).
- L. Jiang, T. C. Niu, X. Q. Lu, H. L. Dong, W. Chen, Y. Q. Liu, W. P. Hu, and D. B. Zhu, "Low-Temperature, Bottom-Up Synthesis of Graphene via a Radical-Coupling Reaction," J. Am. Chem. Soc., 135 [24] 9050-54 (2013). https://doi.org/10.1021/ja4031825
- Y. Z. Chen, H. Medina, H. W. Tsai, Y. C. Wang, Y. T. Yen, A. Manikandan, and Y. L. Chueh, "Low Temperature Growth of Graphene on Glass by Carbon-Enclosed Chemical Vapor Deposition Process and Its Application as Transparent Electrode," Chem. Mater., 27 [5] 1646-55 (2015). https://doi.org/10.1021/cm504431d
- J. H. Choi, Z. C. Li, P. Cui, X. D. Fan, H. Zhang, C. G. Zeng, and Z. Y. Zhang, "Drastic Reduction in the Growth Temperature of Graphene on Copper via Enhanced London Dispersion Force," Sci. Rep., 3 1925 (2013). https://doi.org/10.1038/srep01925
- J. Zhang, J. J. Li, Z. L. Wang, X. N. Wang, W. Feng, W. Zheng, W. W. Cao, and P. A. Hu, "Low-Temperature Growth of Large-Area Heteroatom-Doped Graphene Film," Chem. Mater., 26 [7] 2460-66 (2014). https://doi.org/10.1021/cm500086j
- X. Wan, K. Chen, D. Q. Liu, J. Chen, Q. Miao, and J. B. Xu, "High-Quality Large-Area Graphene from Dehydrogenated Polycyclic Aromatic Hydrocarbons," Chem. Mater., 24 [20] 3906-15 (2012). https://doi.org/10.1021/cm301993z
- E. Lee, H. C. Lee, S. B. Jo, H. Lee, N. S. Lee, C. G. Park, S. K. Lee, H. H. Kim, H. Bong, and K. Cho, "Heterogeneous Solid Carbon Source-Assisted Growth of High-Quality Graphene via CVD at Low Temperatures," Adv. Funct. Mater., 26 [4] 562-68 (2016). https://doi.org/10.1002/adfm.201504194
- M. M. Zhu, Z. H. Du, Z. Y. Yin, W. W. Zhou, Z. D. Liu, S. H. Tsang, and E. H. T. Teo, "Low-Temperature in Situ Growth of Graphene on Metallic Substrates and Its Application in Anticorrosion," ACS Appl. Mater. Interfaces, 8 [1] 502-10 (2016). https://doi.org/10.1021/acsami.5b09453
- K. Gharagozloo-Hubmann, N. S. Muller, M. Giersig, C. Lotze, K. J. Franke, and S. Reicht, "Requirement on Aromatic Precursor for Graphene Formation," J. Phys. Chem. C, 120 [18] 9821-25 (2016). https://doi.org/10.1021/acs.jpcc.6b01781
- M. Marschall, J. Reichert, K. Seufert, W. Auwarter, F. Klappenberger, A. Weber-Bargioni, S. Klyatskaya, G. Zoppellaro, A. Nefedov, T. Strunskus, C. Woll, M. Ruben, and J. V. Barth, "Supramolecular Organization and Chiral Resolution of p-Terphenyl-m-Dicarbonitrile on the Ag(111) Surface," Chemphyschem, 11 [7] 1446-51 (2010). https://doi.org/10.1002/cphc.200900938
- R. Addou, A. Dahal, P. Sutter, and M. Batzill, "Monolayer Graphene Growth on Ni(111) by Low Temperature Chemical Vapor Deposition," Appl. Phys. Lett., 100 [2] 021601 (2012). https://doi.org/10.1063/1.3675481
- C. Klink, I. Stensgaard, F. Besenbacher, and E. Laegsgaard, "An Stm Study of Carbon-Induced Structures on Ni(111) - Evidence for a Carbidic-Phase Clock Reconstruction," Surf. Sci., 342 [1-3] 250-60 (1995). https://doi.org/10.1016/0039-6028(95)00697-4
- J. Lahiri, T. Miller, L. Adamska, I. I. Oleynik, and M. Batzill, "Graphene Growth on Ni(111) by Transformation of a Surface Carbide," Nano Lett., 11 [2] 518-22 (2011). https://doi.org/10.1021/nl103383b
- L. L. Patera, C. Africh, R. S. Weatherup, R. Blume, S. Bhardwaj, C. Castellarin-Cudia, A. Knop-Gericke, R. Schloegl, G. Comelli, S. Hofmann, and C. Cepek, "In Situ Observations of the Atomistic Mechanisms of Ni Catalyzed Low Temperature Graphene Growth," ACS Nano, 7 [9] 7901-12 (2013). https://doi.org/10.1021/nn402927q
- S. Zhou, J. L. Xu, Y. B. Xiao, N. Zhao, and C. P. Wong, "Low-Temperature Ni Particle-Templated Chemical Vapor Deposition Growth of Curved Graphene for Supercapacitor Applications," Nano Energy, 13 458-66 (2015). https://doi.org/10.1016/j.nanoen.2015.03.010
Cited by
- Energy of low-temperature synthesis of graphen-like carbon nanocomposites on porous silicon (Review) vol.1696, pp.None, 2018, https://doi.org/10.1088/1742-6596/1696/1/012025
- Porous Silicon Skeleton as Catalysts for Hydrocarbon Decomposition at Low Temperature Synthesis of Graphene Nanocomposites vol.10, pp.1, 2018, https://doi.org/10.1149/2162-8777/abdd86
- Measurement Technique for High Thermal Conductivity Nanomaterials vol.24, pp.1, 2021, https://doi.org/10.31613/ceramist.2021.24.1.07