• Title/Summary/Keyword: bioseparation

Search Result 102, Processing Time 0.026 seconds

Application of Ionic Liquids as Mobile Phase Modifier in HPLC

  • Polyakova Yulia;Koo Yoon-Mo;Row Kyung-Ho
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.11 no.1
    • /
    • pp.1-6
    • /
    • 2006
  • Ionic liquids are receiving an upsurge of interest as 'green' solvents; primarily as replacements for conventional media in chemical processes. Although ionic liquids are rather 'young' modifier, their great potential in high-performance liquids chromatography (HPLC) has already been demonstrated. This review presents an overview of the applications of ionic liquids as mobile phase modifiers in HPLC.

In situ analysis of capturing dynamics of magnetic nanoparticles in a microfluidic system

  • Munir, Ahsan;Zhu, Zanzan;Wang, Jianlong;Zhou, H. Susan
    • Smart Structures and Systems
    • /
    • v.12 no.1
    • /
    • pp.1-22
    • /
    • 2013
  • Magnetic nanoparticle based bioseparation in microfluidics is a multiphysics phenomenon that involves interplay of various parameters. The ability to understand the dynamics of these parameters is a prerequisite for designing and developing more efficient magnetic cell/bio-particle separation systems. Therefore, in this work proof-of-concept experiments are combined with advanced numerical simulation to design and optimize the capturing process of magnetic nanoparticles responsible for efficient microfluidic bioseparation. A low cost generic microfluidic platform was developed using a novel micromolding method that can be done without a clean room techniques and at much lower cost and time. Parametric analysis using both experiments and theoretical predictions were performed. It was found that flow rate and magnetic field strength greatly influence the transport of magnetic nanoparticles in the microchannel and control the capturing efficiency. The results from mathematical model agree very well with experiments. The model further demonstrated that a 12% increase in capturing efficiency can be achieved by introducing of iron-grooved bar in the microfluidic setup that resulted in increase in magnetic field gradient. The numerical simulations were helpful in testing and optimizing key design parameters. Overall, this work demonstrated that a simple low cost experimental proof-of-concept setup can be synchronized with advanced numerical simulation not only to enhance the functional performance of magneto-fluidic capturing systems but also to efficiently design and develop microfluidic bioseparation systems for biomedical applications.

Characterization of the rfaD Gene Region of Bradyrhizobium japonicum 61A101C

  • Noh, Jae-Sang;Kim, Dong-Hyun;Oh, Eun-Taex;So, Jae-Seong
    • Journal of Microbiology and Biotechnology
    • /
    • v.12 no.5
    • /
    • pp.826-828
    • /
    • 2002
  • In our previous studies, we have cloned and characterized a gene region from Bradyrhizobium japonicum ,which is involved in the synthesis of lipopolysaccharide (LPS). In this study, we have expanded the sequence analysis of the region and found an additional open reading frame (orf), which appeared to be divergently transcribed from the rfaF gene. Sequence alignment of the orf revealed a significant similarity with rfaD genes of Salmonella typhimurium , Escherichia coli, and Neisseria gonorrhoeae. These genes encode a heptose-6-epimerase, which catalyzes the interconversion of ADP -D -glycerol-D-manno-heptose to ADP-L-glycero-D-manno-heptose. This divergent organization of the rfaF and rfaD genes is different from that of other Gram-negative bacteria where two genes form an operon. A rfaD- mutant of E. coli was successfully transformed with plasmid constructs containing the rfaD gene of B. japonicum. Novobiocin sensitivity test showed that the rfaD gene from B. japonicum could complement the rfaD mutation in E. coli, which confirms the functionality of the cloned B. japonicum gene.

Application of Ionic Liquids in Biotechnology (생물공학에서 이온성 액체의 응용)

  • Lee Sang-Mok;Chang Woo-Jin;Koo Yoon-Mo
    • KSBB Journal
    • /
    • v.20 no.3
    • /
    • pp.183-191
    • /
    • 2005
  • Ionic liquids, composed of organic cations and either organic or inorganic anions remain liquid over a wide range of temperature. ionic liquids are a new group of solvents or extractants of great interest as a potential 'green solvent'. Ionic liquids are gaining wide recognition as novel solvents in many research fields, such as chemistry, chemical engineering, electrochemitry, etc. However, not much researches have been done related to biotechnology using ionic liquids, while a lot of researches have been performed in chemistry. The merits of ionic liquids in bioseparation technology are originated from some unique properties of ionic liquids, such as negligible vapor pressure, good thermal stability, controllable viscosity and miscibility with water and organic solvents. An appropriate selection of ionic liquid for bioprocesses requires basic knowledge on physicochemical properties of ionic liquids. This review gives a brief overview on the application of ionic liquids in biotechnology, including bioconversion and bioseparation.