Application of Ionic Liquids in Biotechnology

생물공학에서 이온성 액체의 응용

  • Lee Sang-Mok (Department of Biological Engineering, Inha University) ;
  • Chang Woo-Jin (ERC for Advanced Bioseparation Technology, Inha University) ;
  • Koo Yoon-Mo (Department of Biological Engineering, Inha University, ERC for Advanced Bioseparation Technology, Inha University)
  • 이상목 (인하대학교 생물공학과) ;
  • 장우진 (인하대학교 초정밀생물분리기술연구센터) ;
  • 구윤모 (인하대학교 생물공학과, 인하대학교 초정밀생물분리기술연구센터)
  • Published : 2005.06.01

Abstract

Ionic liquids, composed of organic cations and either organic or inorganic anions remain liquid over a wide range of temperature. ionic liquids are a new group of solvents or extractants of great interest as a potential 'green solvent'. Ionic liquids are gaining wide recognition as novel solvents in many research fields, such as chemistry, chemical engineering, electrochemitry, etc. However, not much researches have been done related to biotechnology using ionic liquids, while a lot of researches have been performed in chemistry. The merits of ionic liquids in bioseparation technology are originated from some unique properties of ionic liquids, such as negligible vapor pressure, good thermal stability, controllable viscosity and miscibility with water and organic solvents. An appropriate selection of ionic liquid for bioprocesses requires basic knowledge on physicochemical properties of ionic liquids. This review gives a brief overview on the application of ionic liquids in biotechnology, including bioconversion and bioseparation.

현재 석유화학 및 화학분야에서 이온성 액체를 이용한 많은 연구가 이뤄지고 있다. 휘발성 유기용매의 대체 물질로서 각광을 받고 있는 이온성 액체는 최대 250억불 이상의 시장을 형성할 것으로 기대된다 위에서 말한 바와 같이 생물공학 분야에서도 이온성 액체를 이용한 연구가 시작되어 용매로 사용하는 방법, 분리매개체로서 사용하는 방법 등 다양하게 이용되고 있다. 이러한 이온성 액체는 효소의 활성, 안정성을 증대시킬 뿐 아니라, 분리 과정도 손쉽게 실현할 수 있다. 또한 환경적 측면과, 경제적인 측면을 고려하여 청정용매로 널리 사용 할 수 있을 것이다. 앞에서 말한 바와 같이 생물공학에서 이온성 액체의 응용 가능성은 무한하다 볼 수 있다. 또한, 나노공학과 생물공학을 접목하는 분야에서도 널리 이온성 액체가 쓰일 수 있을 것이다. 유럽과 미국에서는 주로 청정용매로서의 응용에 대한 연구를, 일본에서는 주로 이온 전도성 재료로서의 응용에 대한 연구를 활발히 하고 있다. 이러한 전 세계적인 연구의 활성화에 비하여 국내 상황은 대학 및 연구소에서 산발적으로 연구가 진행되고 있는 수준이다. 이에 국내에서도 이에 대한 관심과 더불어 정부 및 기업체, 대학 및 연구소에 의한 컨소시엄을 형성하여 보다 체계적인 연구지원이 이뤄져야 할 것이다.

Keywords

References

  1. Muthusamy, S. and B. Gnanaprakasam (2005), Ionic liquids as a convenient recyclable medium for the generation of transient carbonyl ylides: syntheses of oxa and dioxa-bridged polycyclic systems, TETRAHEDRON 61, 1309-1315 https://doi.org/10.1016/j.tet.2004.11.008
  2. Jie, D and D. W. Armstrong (2005), Chiral ionic liquids: Synthesis and applications, Chirality 17, 281-292 https://doi.org/10.1002/chir.20153
  3. Kato, R. and J. Gmehling (2004), Activity coefficients at infInite dilution of various solutes in the ionic liquids [MMIM]+[CH3SO4], [MMIM]+[CH3OC2H4SO4], [MMIM]+[(CH3)2PO4], [C5H5NC2H5]+[(CF3SO2)2N] and [C5H5NH]+[C2H5OC2H4OSO3], Fluid Phase Equilibria 226, 37-44 https://doi.org/10.1016/j.fluid.2004.08.039
  4. Crosthwaite, J. M., S. N. V. K. Aki, E. J. Magirnn, and J. F. Brennecke (2005), Liquid phase behavior of imidazolium-based ionic liquids with alcohols: effect of hydrogen bonding and non-polar interactions, Fluid Phase Equilibria 228-229, 303-309 https://doi.org/10.1016/j.fluid.2004.07.014
  5. Wang, P., B. Wenger, R. Humphry-Baker, J.-E. Moser, J. Tenscher, W. Kantlehner, J. Mezger, E. V. Stoyanov, S. M. Zakeeruddin, and M. Gratzel (2005) Charge separation and efficient light energy conversion in sensitized mesoscopic solar cells based on binary ionic liquids, J. American Chemical Society 127, 6850-6856 https://doi.org/10.1021/ja042232u
  6. Webb, P. B., M. F. Sellin, T. E. Kunene, S. Williamson, A. M. Z. Slawin, and D. J. Cole-Hamilton (2003), Continuous flow hydroformylation of alkenes in supercritical fluid-ionic liquid biphasic systems, J. American Chemical Society 125, 15577-15588 https://doi.org/10.1021/ja035967s
  7. Leitner, W. (2003), Catalysis-A greener solution, Nature 423, 930-931 https://doi.org/10.1038/423930a
  8. Cornils, B. and W. A. Herrmann (2003), Concepts in homogeneous catalysis: the industrial view, J. Catalysis 216, 23-31 https://doi.org/10.1016/S0021-9517(02)00128-8
  9. Zhao, G. Y., T. Jiang, B. X. Han, Z. H. Li, J. M. Zhang, Z. M. Liu, J. He, and W. Z. Wu (2004), Electrochemical reduction of supercritical carbon dioxide in ionic liquid 1-n-butyl-3-methylimidazolium hexafluorophosphate, J. Supercritical Fluids 32, 287-291 https://doi.org/10.1016/j.supflu.2003.12.015
  10. Cole-Hamilton, D. J. (2003), Homogeneous catalysis-new approaches to catalyst separation, recovery, and recycling, Science 299, 1702-1706 https://doi.org/10.1126/science.1081881
  11. Kamal, A. and G. Chouhan (2005), A task-specific ionic liquid [bmim]SCN for the conversion of alkyl halides to alkyl thiocyanates at room temperature, Tetrahedron Letters 46, 1489-1491 https://doi.org/10.1016/j.tetlet.2005.01.040
  12. Xie, H. B., S. B. Zhang, and H. F. Duan (2004), An ionic liquid based on a cyclic guanidinium cation is an efficient medium for the selective oxidation of benzyl alcohols, Tetrahedron Letters 45, 2013-2015 https://doi.org/10.1016/j.tetlet.2003.12.141
  13. Brinchi, L., R. Germani, and G. Savelli (2003), Ionic liquids as reaction media for esterification of carboxylate sodium salts with alkyl halides, Tetrahedron Letters 44, 2027-2029 https://doi.org/10.1016/S0040-4039(03)00179-5
  14. Singer, R. D. and P. J. Scammells (2001), Alternative methods for the $MnO_{2}$ oxidation of codeine methyl ether to thebaine utilizing ionic liquids, Tetrahedron Letters 42, 6831-6833 https://doi.org/10.1016/S0040-4039(01)01383-1
  15. Olivier, H (1999), Recent developments in the use of non-aqueous ionic liquids for two-phase catalysis, J. Molecular Catalysis A: Chemical 146, 285-289 https://doi.org/10.1016/S1381-1169(99)00114-4
  16. Kim, H. W., J. M. Jeong, Y. S. Lee, D. Y. Chi, K. H. Chung, D. S. Lee, J. K. Chung, and M. C. Lee (2004), Rapid synthesis of [18F]FDG without an evaporation step using an ionic liquid, Applied Radiation and Isotopes 61, 1241-1246 https://doi.org/10.1016/j.apradiso.2004.02.027
  17. Mehnert, C. P., R. A. Cook, N. C. Dispenziere, and E. J. Mozeleski (2004), Biphasic hydroformylation catalysis in ionic liquid media, Polyhedron 23, 2679-2688 https://doi.org/10.1016/j.poly.2004.06.029
  18. Chhikara, B. S., R. Chandra, and V. Tandon (2004), IBX in an ionic liquid: eco-friendly oxidation of 17 alpha-methylandrostan-3 beta,17 beta-diol, an intermediate in the synthesis of anabolic oxandrolone, Tetrahedron Letters 45, 7585-7588 https://doi.org/10.1016/j.tetlet.2004.08.127
  19. Nakashima, K., F. Kubota, T. Maruyama, and M. Goto (2005), Feasibility of ionic liquids as alternative separation media for industrial solvent extraction processes, Industrial Engineering Chemical Research Page EST 4.8
  20. Comyns, C., N. Karodia, S. Zeler, and J. A. Andersen (2000), Clean catalysis with clean solvents-phosphonium tosylates for transfer hydrogenation reactions, Catalysis Letters 67, 113-115 https://doi.org/10.1023/A:1019005202912
  21. Hirayama, N., M. Deguchi, H. Kawasumi, and T. Honjo (2005) Use of 1-alkyl-3-methylimidazolium hexafluorophosphate room temperature ionic liquids as chelate extraction solvent with 4,4,4-trifluoro-1-(2-thienyl)-1,3-butanedione, TALANTA 65, 255-260 https://doi.org/10.1016/j.talanta.2004.06.015
  22. Letcher, T. M. and P. Reddy (2004), Ternary liquid-liquid equilibria for mixtures of 1-hexyl-3-methylimidozolium (tetrafluoroborate or hexafluorophosphate) plus ethanol plus an alkene at T=298.2 K, Fluid Phase Equilibria 219, 107-112 https://doi.org/10.1016/j.fluid.2003.10.012
  23. Wei, L., J. Y. Jiang, Y. H. Wang, and Z. L. Jin (2004), Selective hydrogenation of SBS catalyzed by Ru/TPPTS complex in polyether modified ammonium salt ionic liquid, J. Molecular Catalysis A-Chemical 221, 47-50 https://doi.org/10.1016/j.molcata.2004.07.005
  24. Wasserscheid, P. and M. Eichmann (2001), Selective dimerisation of 1-butenein biphasic mode using buffered chloroaluminate ionic liquid solvents-design and application of a continuous loop reactor, Catalysis Today 66, 309-316 https://doi.org/10.1016/S0920-5861(00)00617-9
  25. Liu, J. F., Y. G. Chi, and G. B. Jiang (2005), Screening the extract ability of some typical environmental pollutants by ionic liquids in liquid-phase microextraction, J Separation Science 28, 87-91 https://doi.org/10.1002/jssc.200401805
  26. Visser, A. E. and R. D. Rogers (2003), Room-temperature ionic liquids: new solvents for f-element separations and associated solution chemistry, J. Solid State Chemistry 171, 109-113 https://doi.org/10.1016/S0022-4596(02)00193-7
  27. Peng, J. F., J. F. Liu, G. B. Jiang, C. Tai, and M. J. Huang (2005), Ionic liquid for high temperature headspace liquid-phase microextraction of chlorinated anilines in environmental water samples, J. Chromatography A 1072, 3-6 https://doi.org/10.1016/j.chroma.2004.11.060
  28. Handy, S. T. and M. Okello (2005), Homogeneous supported synthesis using ionic liquid supports: Tunable separation properties, J. Oraganic Chemistry 70, 2874-2877 https://doi.org/10.1021/jo047807k
  29. Wei, G. T., Z. S. Yang, and C. J. Chen(2003), Room temperature ionic liquid as a novel medium for liquid/liquid extraction of metal ions, Analytica Chimica Acta 488, 183-192 https://doi.org/10.1016/S0003-2670(03)00660-3
  30. Okada, I. (1999), The Chemla effect-from the separation of isotopes to the modeling of binary ionic liquids, J. Molecular Liquids 83, 5-22 https://doi.org/10.1016/S0167-7322(99)00067-7
  31. Zou, G., Z. Y. Wang, J. R. Zhu, J. Tang, and M. Y. He (2003), Developing an ionic medium for ligandless-palladium-catalysed Suzuki and Heck couplings, J. Molecular Catalysis A: Chemical 206, 193-198 https://doi.org/10.1016/S1381-1169(03)00428-X
  32. Ma, H. Y., X. H. Wan, X. F. Chen, and Q. F. Zhou (2003), Reverse atom transfer radical polymerization of methyl methacrylate in imidazolium ionic liquids, Polymer 44, 5311-5316 https://doi.org/10.1016/S0032-3861(03)00531-7
  33. Shen, Y. Q., H. D. Tang, and S. J. Ding (2004), Catalyst separation in atom transfer radical polymerization, Progress in Polymer Science 29, 1053-1078 https://doi.org/10.1016/j.progpolymsci.2004.08.002
  34. Yi, F., Y. Peng, and G. Song (2005), Microwave-assisted liquid-phase synthesis of methyl 6-amino-5-cyano-4-aryl-2-methyl-4H-pyran-3-carboxylate using functional ionic liquid as soluble support, Tetrahedron Letters 46, 3931-3933 https://doi.org/10.1016/j.tetlet.2005.03.197
  35. Scurto, A. M., S. N. V. K. Aki, and J. F. Brennecke (2002), CO2 as a separation switch for ionic liquid/organic mixtures, J. American Chemical Society 124, 10276-10277 https://doi.org/10.1021/ja0268682
  36. Arce, A., O. Rodriguez, and A. Soto (2004), Tert-amyl ethyl ether separation from its mixtures with ethanol using the 1-butyl-3-methylimidazolium trifluoromethanesulfonate ionic liquid: Liquid-liquid equilibrium, Industrial & Engineering Chemistry Research 43, 8323-8327 https://doi.org/10.1021/ie049621h
  37. Gutowski, K. E., G. A. Broker, H. D. Willauer, J. G. Huddleston, R. P. Swatloski, J. D. Holbrey, and R. D. Rogers (2003), Controlling the aqueous miscibility of ionic liquids: Aqueous biphasic systems of water-miscible ionic liquids and water-structuring salts for recycle, metathesis, and separations, J. American Chemical Society 125, 6632-6633 https://doi.org/10.1021/ja0351802
  38. Herthod, M., J. M. Joerger, G. Mignani, M. Vaultier, and M. Lemaire (2004), Enantioselective catalytic asymmetric hydrogenation of ethyl acetoacetate in room temperature ionic liquids, Tetrahedron: Asymmetry 15, 2219-2221 https://doi.org/10.1016/j.tetasy.2004.04.010
  39. Baleizao, C., B. Gigante, H. Garcia, and A. Corma (2004), Chiral vanadyl salen complex anchored on supports as recoverable catalysts for the enantioselective cyanosilylation of aldehydes. Comparison among silica, single wall carbon nanotube, activated carbon and imidazolium ion as support, Tetrahedron 60, 10461-10468 https://doi.org/10.1016/j.tet.2004.08.077
  40. Kaliszan, R., M. P. Marszall, M. J. Markuszewski, T. Baczek, and J. Pernak (2004), Suppression of deleterious effects of free silanols in liquid chromatography by imidazolium tetrafluoroborate ionic liquids, J. Chromatography 1030, 263-271 https://doi.org/10.1016/j.chroma.2003.09.020
  41. Liu, J. F., J. A. Jonsson, and G. B Jiang (2005), Application of ionic liquids in analytical chemistry, Trends in Analytical Chemistry 24, 20-27 https://doi.org/10.1016/j.trac.2004.09.005
  42. Liu, J.F., Y. G. Chi, G. B. Jiang, C. Tai, J. F. Peng, and J. T. Hu (2004), Ionic liquid-based liquid-phase microextraction, a new sample enrichment procedure for liquid chromatography, J. Chromatography A 1026, 143-147 https://doi.org/10.1016/j.chroma.2003.11.005
  43. Waichigo, M. M., T. L. Riechel, and N. D. Danielson (2005), Ethylammonium acetate as a mobile phase modifier for reversed phase liquid chromatography, Chromatographia 61, 17-23 https://doi.org/10.1365/s10337-004-0460-0
  44. Xiao, X. H., L. Zhao, X. Liu, and S. X. Jiang (2004), Ionic liquids as additives in high performance liquid chromatography: Analysis of amines and the interaction mechanism of ionic liquids, Acta 519, 207-211
  45. He, L. J., W. Z. Zhang, L. Zhao, X. Liu, and S. X. Jiang (2003), Effect of 1-alkyl-3-methylimidazolium-based ionic liquids as the eluent on the separation of ephedrines by liquid chromatography, J. Chromatography A 1007, 39-45 https://doi.org/10.1016/S0021-9673(03)00987-7
  46. Mwongela, S. M., A. Numan, N. L. Gill, R. A. Agbaria, and I. M. Warner (2003), Separation of achiral and chiral analytes using polymeric surfactants with ionic liquids as modifiers in micellar electrokinetic chromatography, Analytical Chemistry 75, 6089-6096 https://doi.org/10.1021/ac034386i
  47. Liu, J.F., N. Li, G. B. Jiang, J. M. Li, J. A. Jonsson, and M. J. Wen (2005), Disposable ionic liquid coating for headspace solid-phase microextraction of benzene, toluene, ethylbenzene, and xylenes in paints followed by gas chromatographyflame ionization detection, J. Chromatography A 1066, 27-32 https://doi.org/10.1016/j.chroma.2005.01.024
  48. David, W., T. M. Letcher, D. Ramjugernath, and J. D. Raal (2003), Activity coefficients of hydrocarbon solutes at infinite dilution in the ionic liquid, 1-methyl-3-octyl-imidazolium chloride from gas-liquid chromatography, J. Chemical Thermodynamics 35, 1335-1341 https://doi.org/10.1016/S0021-9614(03)00091-0
  49. Vaher, M., M. Koel, and M. Kaljurand (2002), Application of 1-alkyl-3-methylimidazolium-based ionic liquids in non-aqueous capillary electrophoresis, J. Chromatography A 979, 27-32 https://doi.org/10.1016/S0021-9673(02)01499-1
  50. Armstrong, N., A. D. Lencastre, and E. Gouaux (1999), A new protein folding screen: Application to the ligand binding domains of a glutamate and kainate receptor and to lysozyme and carbonic anhydrase, Protein Science 8, 1475-1483 https://doi.org/10.1110/ps.8.7.1475
  51. Catherine A. S. and A. F. II Robert (2000), Protein renaturation by the liquid organic salt ethylammonium nitrate, Protein Science 9, 2001-2008 https://doi.org/10.1110/ps.9.10.2001
  52. Jastorff, B., R. Stormann, J. Ranke, K. Molter, F. Stock, B. Oberheitmann, W. Hoffmann, J. Hoffmann, M. Nuchter, B. Ondruschka, and J. Filser (2003), How hazardous are ionic liquids? Structure activity relationships and biological testing as important elements for sustainability evaluation, Green Chemistry 5, 136-142 https://doi.org/10.1039/b211971d
  53. Matsumoto, M., K. Mochiduki, K. Fukunishi, and K. Kondo (2004), Extraction of organic acids using imidazolium-based ionic liquids and their toxicity to Lactobacillus rhamnosus, Separation and Purification Technology 40, 97-101 https://doi.org/10.1016/j.seppur.2004.01.009
  54. Matsumoto, M., K. Mochiduki, and K. Kondo (2004), Toxicity of ionic liquids and organic solvents to lactic acid-producing bacteria, J. Bioscience and Bioengineering 98, 344-347
  55. Ranke, J., K. Molter, F. Stock, U. Bottin-Weber, J. Poczobutt, J. Hoffmann, B. Ondruschka, J. Filser, and B. Jastorff (2004), Biological effects of imidazolium ionic liquids with varying chain lengths in acute Vibrio fischeri and WST-1 cell viability assays, Ecotoxicology AND Environmental Safety 58, 396-404 https://doi.org/10.1016/S0147-6513(03)00105-2
  56. Swatloski, R. P., J. D. Holbrey, S. B. Memon, G. A. Caldwell, K. A. Caldwell, and R. D. Rogers (2004), Dsing Caenorhabditis elegans to probe toxicity of 1-alkyl-3-methylimidazolium chloride based ionic liquids, Chemical Communications 6, 668-669
  57. Jain, N., A. Kumar, S. Chauhan, and S. M. S. Chauhan (2005), Chemical and biochemical transformations in ionic liquids, TETRAHEDRON 61, 1015-1060 https://doi.org/10.1016/j.tet.2004.10.070
  58. Bornscheuer, U. T., C. Bessler, R. Srinivas, and S. H. Krishna (2002), Optimizing lipases and related enzymes for efficient application, Trends in Biotechnology 20, 433-437 https://doi.org/10.1016/S0167-7799(02)02046-2
  59. Schofer, S. H., N. Kaftzik, P. Wasserscheid, and D. Kragl (2001), Enzyme catalysis in ionic liquids: lipase catalysed kinetic resolution of 1-phenylethanol with improved enantioselectivity, Chemical Communications 5, 425-426
  60. Panke, S. and M. G. Wubbolts (2002), Enzyme technology and bioprocess engineering, Current Opinion in Biotechnology 13, 111-116 https://doi.org/10.1016/S0958-1669(02)00302-6
  61. Park, S. and R. J. Kazlauskas (2003), Biocatalysis in ionic liquids-advantages beyond green technology, Current Opinion in Biotechnology 14, 432-437 https://doi.org/10.1016/S0958-1669(03)00100-9
  62. van Rantwijk, F., R. M. Lau, and R. A. Sheldon (2003), Biocatalytic transformations in ionic liquids, Trends in Biotechnology 21, 131-138 https://doi.org/10.1016/S0167-7799(03)00008-8
  63. Walker, A. J. and N. C. Bruce (2004), Combined biological and chemical catalysis in the preparation of oxycodone, TETRAHEDRON 60, 561-568 https://doi.org/10.1016/j.tet.2003.11.063
  64. Kragl, U., M. Eckstein, and N. Kaftzik (2002), Enzyme catalysis in ionic liquids, Current Opinion in Biotechnology 13, 565-571 https://doi.org/10.1016/S0958-1669(02)00353-1
  65. Jaeger, K. E. and T. Eggert (2002), Lipases for biotechnology, Current Opinion in Biotechnology 13, 390-397 https://doi.org/10.1016/S0958-1669(02)00341-5
  66. Yahya, A. R. M., W. A. Anderson, and M. Moo-Young (1998), Ester synthesis in lipase-catalyzed reactions, Enzyme and Microbial Technology 23, 438-450 https://doi.org/10.1016/S0141-0229(98)00065-9
  67. Flores, M. V. and P. J. Halling (2002), Full model for reversible kinetics of lipase-catalyzed sugar-ester synthesis in 2-methyl 2-butanol, Biotechnology and Bioengineering 78, 794-800
  68. Ulbert, O., T. Frater, K. Belafi-Bako, and L. Gubicza (2004), Enhanced enantioselectivity of Candida rugosa lipase in ionic liquids as compared to organic solvents, J. Molecular Catalysis B-Enzymatic 31, 39-45 https://doi.org/10.1016/j.molcatb.2004.07.003
  69. Kamal, A. and G. Chouhan (2004), Chemoenzymatic synthesis of enantiomericallypure 1,2-diols employing immobilized lipase in the ionic liquid [bmim]PF6, Tetrahedron Letters 45, 8801-8805 https://doi.org/10.1016/j.tetlet.2004.10.015
  70. Lau, R. M., F. van Rantwijk, K. R. Seddon, and R. A. Sheldon (2000), Lipase-catalyzed reactions in ionic liquids, Organic Letters 2, 4189-4191 https://doi.org/10.1021/ol006732d
  71. Eckstein, M., P. Wasserscheid, and U. Kragl (2002), Enhanced enantioselectivity of lipase from Pseudomonas sp at high temperatures and fixed water activity in the ionic liquid, 1-butyl-3-methylimidazolium bis[(trifluoromethyl)sulfonyl]amide, Biotechnology Letters 24, 763-767 https://doi.org/10.1023/A:1015563801977
  72. Kim, M. J., M. Y. Choi, J. K. Lee, and Y. Ahn (2003), Enzymatic selective acylation of glycosides in ionic liquids: significantly enhanced reactivity and regioselectivity, J. Molecular Catalysis B-Enzymatic 26, 115-118 https://doi.org/10.1016/j.molcatb.2003.04.001
  73. Chiappe, C., E. Leandri, S. Lucchesi, D. Pieraccini, B. D. Hammock, and C. Morisseau (2004), Biocatalysis in ionic liquids: the stereoconvergent hydrolysis of trans-beta-methylstyrene oxide catalyzed by soluble epoxide hydrolase, J. Molecular Catalysis B-Enzymatic 27, 243-248 https://doi.org/10.1016/j.molcatb.2003.12.008
  74. Kaftzik, N., P. Wasserscheid, and U. Kragl (2002), Use of ionic liquids to increase the yield and enzyme stability in the beta-galactosidase catalysed synthesis of N-acetyllactosamine, Organic Process Research & Development 6, 553-557 https://doi.org/10.1021/op0255231
  75. Poole, C. F. (2004), Chromatographic and spectroscopic methods for the determination of solvent properties of room temperature ionic liquids, J. Chromatography A 1037, 49-82 https://doi.org/10.1016/j.chroma.2003.10.127
  76. Liu, J. F., J. F. Peng, Y. G. Chi, and G. B. Jiang (2005), Determination of formaldehyde in shiitake mushroom by ionic liquid-based liquid-phase microextraction coupled with liquid chromatography, TALANTA 65, 705-709 https://doi.org/10.1016/j.talanta.2004.07.037
  77. Qi, S. D., S. Y. Cui, X. G. Chen, and Z. Hu (2004), Rapid and sensitive determination of anthraquinones in Chinese herb using 1-butyl-3-methylimidazolium-based ionic liquid with beta-cyclodextrin as modifier in capillary zone electrophoresis, J. Chromatography A 1059, 191-198 https://doi.org/10.1016/j.chroma.2004.09.090
  78. Jiang, T. F., Y. L. Gu, B. Liang, J. B. Li, Y. P. Shi, and Q. Y. Ou (2003), Dynamically coating the capillary with 1-alkyl-3-methylimidazolium-based ionic liquids for separation of basic proteins by capillary electrophoresis, Analytica Chimica Acta 479, 249-254 https://doi.org/10.1016/S0003-2670(02)01537-4
  79. Qin, W. D. and S. F. Y. Li (2002), An ionic liquid coating for determination of sildenafil and UK-103,320 in human serum by capillary zone electrophoresis-ion trap mass spectrometry, Electrophoresis 23, 4110-4116 https://doi.org/10.1002/elps.200290028
  80. Baczek, T., M. P. Marszall, R. Kaliszan, L. Walijewski, W. Makowiecka, B. Sparzak, Z. Grzonka, K. Wisniewska, and P. Juszczyk (2005), Behavior of peptides and computer-assisted optimization of peptides separations in a normal-phase thin-layer chromatography system with and without the addition of ionic liquid in the eluent, Biomedical Chromatography 19, 1-8 https://doi.org/10.1002/bmc.405
  81. Fernandez, D., A. J. Parola, L. C. Branco, C. A. M. Afonso, and F. Pina (2004), Thermal and photochemical properties of 4-hydroxyflavylium in water-ionic liquid biphasic systems, J. Photochemistry and Photobiology A-Chemistry 168, 185-189 https://doi.org/10.1016/j.jphotochem.2004.05.022
  82. Soto, A., A. Alberto, and K. K. Mohammad (2005), Partitioning of antibiotics in a two-liquid phase system formed by water and a room temperature ionic liquid, Separation and Purification Technology In Press
  83. Baumann, M. D., A. J. Daugulis, and P. G. Jessop (2005), Phosphonium ionic liquids for degradation of phenol in a two-phase partitioning bioreactor, Applied Microbiology and Biotechnology 67, 131-137
  84. Cull, S. G., J. D. Holbrey, V. Vargas-Mora, K. R. Seddon, and G. J. Lye (2000), Room-temperature ionic liquids as replacements for organic solvents in multiphase bioprocess operations, Biotechnology and Bioengineering 69, 227-233 https://doi.org/10.1002/(SICI)1097-0290(20000720)69:2<227::AID-BIT12>3.0.CO;2-0
  85. Reetz, M. T., W. Wiesenhofer, G. Francio, and W. Leitner (2003), Continuous flow enzymatic kinetic resolution and enantiomer separation using ionic liquid$^{}$ercritical carbon dioxide media, Advanced Synthesis & Catalysis 345, 1221-1228 https://doi.org/10.1002/adsc.200303109
  86. Branco, L. C., J. G. Crespo, and C. A. M. Afonso (2002), Highly selective transport of organic compounds by using supported liquid membranes based on ionic liquids, Angewandte Chemie-International Edition 41, 2771-2773 https://doi.org/10.1002/1521-3773(20020802)41:15<2771::AID-ANIE2771>3.0.CO;2-U
  87. Branco, L. C., J. G. Crespo, and C. A. M. Afonso (2002), Studies on the selective transport of organic compounds by using ionic liquids as novel supported liquid membranes, Chemistry-A European J. 8, 3865-3871 https://doi.org/10.1002/1521-3765(20020902)8:17<3865::AID-CHEM3865>3.0.CO;2-L
  88. Matsumoto, M., T. Inomoto, and K. Kondo (2005), Selective separation of aromatichydrocarbons through supported liquid membranes based on ionic liquids, J. Membrane Science 246, 77-81 https://doi.org/10.1016/j.memsci.2004.08.013
  89. Schlosser, S., R. Kertesz, and J. Martak (2005), Recovery and separation of organic acids by membrane-based solvent extraction and pertraction: An overview with a case study on recovery of MPCA, Separation and Purification Technology 41, 237-266 https://doi.org/10.1016/j.seppur.2004.07.019
  90. Fortunato, R., M. J. Gonzalez-Munoz, M. Kubasiewicz, S. Luque, J. R. Alvarez, C. A. M. Afonso, I. M. Coelhoso, and J. G. Crespo (2005), Liquid membranes using ionic liquids: the influence of water on solute transport, J. Membrane Science 249, 153-162 https://doi.org/10.1016/j.memsci.2004.10.007
  91. Miyako, E., T. Maruyama, N. Karniya, and M. Goto (2003), Use of ionic liquids in a lipase-facilitated supported liquid membrane, Biotechnology Letters 25, 805-808 https://doi.org/10.1023/A:1023536922749
  92. Krockel, J. and U. Kragl (2003), Nanofiltration for the separation of nonvolatile products from solutions containing ionic liquids, Chemical Engineering & Technology 26, 1166-1168 https://doi.org/10.1002/ceat.200301830
  93. Gorman-Lewis, D. J. and J. B. Fein (2004), Experimental study of the adsorption of an ionic liquid onto bacterial and mineral surfaces, Environmental Science & Technology 38, 2491-2495 https://doi.org/10.1021/es0350841
  94. Trewyn, B. G., C. M. Whitman, and V. S. Y. Lin (2004), Morphological control of room-temperature ionic liquid templated mesoporous silica nanoparticles for controlled release of antibacterial agents, Nano Letters 4, 2139-2143 https://doi.org/10.1021/nl048774r
  95. Turner, M. B., S. K. Spear, J. D. Holbrey, and R. D. Rogers (2004), Production of bioactive cellulose films reconstituted from ionic liquids, Biomacromolecules 5, 1379-1384 https://doi.org/10.1021/bm049748q