This paper presents a SPIHT image compression method using biorthogonal multi wavelets on [-1,1]. A family of biorthogonal scaling vectors is constructed using fractal interpolation function, and the associated biorthogonal multi wavelets are constructed. This paper uses biorthogonal multi wavelets to be supported in [-1,1] associated with biorthogonal scaling vectors to be supported in [-1,1]. The scaling vectors and wavelets remain biorthogonal when restricted to integer intervals, making them well suited for bounded domains. The experiment results of simulation of the proposed image compression using biorthogonal multiwavelets on [-1,1] based on SPIHT were found to be excellent PSNR for LENA and PEPPERS images except for BABOON image than already existing single wavelets and DGHM multi wavelets.
It is shown that a pair of Hilbert space operators V and W such that $V^*W=I$ (called a biisometric pair) shares some common properties with unilateral shifts when orthonormal bases are replaced with biorthogonal sequences, and it is also shown how such a pair of biisometric operators yields a pair of biorthogonal sequences which are shifted by them. These are applied to a class of Laguerre operators on $L^2[0,{\infty})$.
In this paper, we find $n^{th}$ order wavelet derivatives of a sufficiently smooth function using biorthogonal wavelet bases and derive the order of convergence of the $n^{th}$ order wavelet derivatives.
대규모 비대칭 행렬의 특정 고유치들이 많은 중요한 과학, 공학 문제들에서 요구된다. 그 문제를 해결할 수 있는 방법 중의 하나인 biorthogonal 란초스 알고리즘은 심각한 문제점이 있는데, 어떤 특이한 상황에서 알고리즘을 계속할 수 없는 경우가 발생할 수 있다는 것이다. 본 논문에서는 기본적인 biorhogonal 알고리즘이 만드는 축소된 삼중 대각 행렬에 대하여 동일한 고유치를 발견할 수 있는 향상된 biorhogonal 란초스 알고리즘을 소개한다. 이 새로운 알고리즘은 대규모 비대칭 행렬의 특정 고유치들을 구할 수 있으며 기본적인 biorthogonal 란초스 알고리즘에 비해서 안정적인 방법이라는 것을 Cray 컴퓨터를 이용한 실험을 통해서 보여준다.
본 논문에서는 다중 부호 신호 (MC: multi-code signal)를 정 진폭으로 전송하는 정 진폭 이진 직교 다중 부호 변조 방식 (CABM: constant-amplitude biorthogonal multi-code modulation)을 제안한다. 정 진폭을 유지하기 위해 제안된 CABM 방식에서는 잉여 비트를 사용하여 신호를 부호화 하였다. 제안된 CABM 변조 방식은 매우 높은 스펙트럼 효율을 지원할 수 있다. 또한 본 논문에서는 제안된 CABM 신호를 복조하기 위한 다양한 복조 방식들을 제시하고 기존의 정 진폭 직교 변조 방식 (CAOM: Constant-amplitude orthogonal multi-code modulation)과 그 성능을 비교한다. 제안된 CABM 변/복조 방식은 고속 데이터 율을 제공해야 하는 디지털 무선 통신 시스템으로 사용될 수 있다.
본 논문에서는 다중부호 신호(multi-code signal)를 정진폭으로 전송하는 정진폭 다중부호 이진직교 변조방식(constant-amplitude multicode-biorthogonal modulation)에서 사용될 수 있는 오류제어 부호를 제안한다. 격자부호를 사용하여 시스템의 비트 오율 성능을 높이는 방식이 정진폭 다중부호 이진직교 변조방식에 적합함을 보인다. 정진폭 다중부호 이진직교 변조방식에서는 정진폭을 유지하기 위해 세로축의 패리티 비트를 사용하여 신호를 부호화 하게 된다. 제안된 시스템에서는 정진폭을 유지하기 위해 사용되는 세로축의 패리티 비트에 추가적으로 부호화를 수행하여 가로축의 패리티 비트를 부가하되 격자구조가 되도록 하여 비트오율 성능의 개선을 최대화 한다. 제안된 시스템은 시스템 복잡도의 증가가 거의 없으며 복호기도 매우 간단하게 구현될 수 있다. 실험결과에 의하면 제안된 시스템은 격자구조를 사용하지 않은 시스템에 비해 현격한 성능의 개선이 있음을 알 수 있다.
We consider totally interpolating biorthogonal multiwavelet systems with finite impulse response two-band multifilter banks, a study balancing order conditions of such systems. Based on FIR and interpolating properties, we show that approximation order condition is completely equivalent to balancing order condition. Consequently, a prefiltering can be avoided if a totally interpolating biorthogonal multiwavelet system satisfies suitable approximation order conditions. An example with approximation order 4 is provided to illustrate the result.
This paper deals with Littlewood-Paley type estimates of the Besov spaces {{{{ { B}`_{p,q } ^{$\alpha$ } }}}} on the d-dimensional unit cube for 0< p,q<$\infty$ by two certain classes. These classes are including biorthogonal wavelet systems or dual multiscale systems but not necessarily obtained as the dilates or translates of certain fixed functions. The main assumptions are local supports of both classes, sufficient smoothness for one class, and sufficiently many vanishing moments for the other class. With these estimates, we characterize the Besov spaces by coefficient norms of decompositions with respect to biorthogonal wavelet systems on the cube.
By analyzing one-parameter families of totally interpolating multiwavelet systems of minimal total length with low approximation orders, whose explicit formulas were obtained with the aid of well-known relations of filters, we demonstrate the infinitude of such systems.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.